\frac { 2 ( 15,4 + 3 ) } { 3 } - \frac { ( 15,4 - 3 ) } { 4 }
Evaluate
\frac{55}{6}\approx 9,166666667
Factor
\frac{5 \cdot 11}{2 \cdot 3} = 9\frac{1}{6} = 9.166666666666666
Share
Copied to clipboard
\frac{2\times 18,4}{3}-\frac{15,4-3}{4}
Add 15,4 and 3 to get 18,4.
\frac{36,8}{3}-\frac{15,4-3}{4}
Multiply 2 and 18,4 to get 36,8.
\frac{368}{30}-\frac{15,4-3}{4}
Expand \frac{36,8}{3} by multiplying both numerator and the denominator by 10.
\frac{184}{15}-\frac{15,4-3}{4}
Reduce the fraction \frac{368}{30} to lowest terms by extracting and canceling out 2.
\frac{184}{15}-\frac{12,4}{4}
Subtract 3 from 15,4 to get 12,4.
\frac{184}{15}-\frac{124}{40}
Expand \frac{12,4}{4} by multiplying both numerator and the denominator by 10.
\frac{184}{15}-\frac{31}{10}
Reduce the fraction \frac{124}{40} to lowest terms by extracting and canceling out 4.
\frac{368}{30}-\frac{93}{30}
Least common multiple of 15 and 10 is 30. Convert \frac{184}{15} and \frac{31}{10} to fractions with denominator 30.
\frac{368-93}{30}
Since \frac{368}{30} and \frac{93}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{275}{30}
Subtract 93 from 368 to get 275.
\frac{55}{6}
Reduce the fraction \frac{275}{30} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}