Solve for x
x = \frac{\sqrt{177} + 7}{4} \approx 5.076033674
x=\frac{7-\sqrt{177}}{4}\approx -1.576033674
Graph
Share
Copied to clipboard
\left(x+2\right)\times 2-\left(x-4\right)\left(x+1\right)=\left(x-4\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x-4,x+2.
2x+4-\left(x-4\right)\left(x+1\right)=\left(x-4\right)\left(x+2\right)
Use the distributive property to multiply x+2 by 2.
2x+4-\left(x^{2}-3x-4\right)=\left(x-4\right)\left(x+2\right)
Use the distributive property to multiply x-4 by x+1 and combine like terms.
2x+4-x^{2}+3x+4=\left(x-4\right)\left(x+2\right)
To find the opposite of x^{2}-3x-4, find the opposite of each term.
5x+4-x^{2}+4=\left(x-4\right)\left(x+2\right)
Combine 2x and 3x to get 5x.
5x+8-x^{2}=\left(x-4\right)\left(x+2\right)
Add 4 and 4 to get 8.
5x+8-x^{2}=x^{2}-2x-8
Use the distributive property to multiply x-4 by x+2 and combine like terms.
5x+8-x^{2}-x^{2}=-2x-8
Subtract x^{2} from both sides.
5x+8-2x^{2}=-2x-8
Combine -x^{2} and -x^{2} to get -2x^{2}.
5x+8-2x^{2}+2x=-8
Add 2x to both sides.
7x+8-2x^{2}=-8
Combine 5x and 2x to get 7x.
7x+8-2x^{2}+8=0
Add 8 to both sides.
7x+16-2x^{2}=0
Add 8 and 8 to get 16.
-2x^{2}+7x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\times 16}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 7 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\times 16}}{2\left(-2\right)}
Square 7.
x=\frac{-7±\sqrt{49+8\times 16}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-7±\sqrt{49+128}}{2\left(-2\right)}
Multiply 8 times 16.
x=\frac{-7±\sqrt{177}}{2\left(-2\right)}
Add 49 to 128.
x=\frac{-7±\sqrt{177}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{177}-7}{-4}
Now solve the equation x=\frac{-7±\sqrt{177}}{-4} when ± is plus. Add -7 to \sqrt{177}.
x=\frac{7-\sqrt{177}}{4}
Divide -7+\sqrt{177} by -4.
x=\frac{-\sqrt{177}-7}{-4}
Now solve the equation x=\frac{-7±\sqrt{177}}{-4} when ± is minus. Subtract \sqrt{177} from -7.
x=\frac{\sqrt{177}+7}{4}
Divide -7-\sqrt{177} by -4.
x=\frac{7-\sqrt{177}}{4} x=\frac{\sqrt{177}+7}{4}
The equation is now solved.
\left(x+2\right)\times 2-\left(x-4\right)\left(x+1\right)=\left(x-4\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+2\right), the least common multiple of x-4,x+2.
2x+4-\left(x-4\right)\left(x+1\right)=\left(x-4\right)\left(x+2\right)
Use the distributive property to multiply x+2 by 2.
2x+4-\left(x^{2}-3x-4\right)=\left(x-4\right)\left(x+2\right)
Use the distributive property to multiply x-4 by x+1 and combine like terms.
2x+4-x^{2}+3x+4=\left(x-4\right)\left(x+2\right)
To find the opposite of x^{2}-3x-4, find the opposite of each term.
5x+4-x^{2}+4=\left(x-4\right)\left(x+2\right)
Combine 2x and 3x to get 5x.
5x+8-x^{2}=\left(x-4\right)\left(x+2\right)
Add 4 and 4 to get 8.
5x+8-x^{2}=x^{2}-2x-8
Use the distributive property to multiply x-4 by x+2 and combine like terms.
5x+8-x^{2}-x^{2}=-2x-8
Subtract x^{2} from both sides.
5x+8-2x^{2}=-2x-8
Combine -x^{2} and -x^{2} to get -2x^{2}.
5x+8-2x^{2}+2x=-8
Add 2x to both sides.
7x+8-2x^{2}=-8
Combine 5x and 2x to get 7x.
7x-2x^{2}=-8-8
Subtract 8 from both sides.
7x-2x^{2}=-16
Subtract 8 from -8 to get -16.
-2x^{2}+7x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+7x}{-2}=-\frac{16}{-2}
Divide both sides by -2.
x^{2}+\frac{7}{-2}x=-\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{7}{2}x=-\frac{16}{-2}
Divide 7 by -2.
x^{2}-\frac{7}{2}x=8
Divide -16 by -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=8+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=8+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{177}{16}
Add 8 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{177}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{177}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{177}}{4} x-\frac{7}{4}=-\frac{\sqrt{177}}{4}
Simplify.
x=\frac{\sqrt{177}+7}{4} x=\frac{7-\sqrt{177}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}