Solve for a
a=-1+\frac{6}{x}
x\neq 2\text{ and }x\neq 0
Solve for x
x=\frac{6}{a+1}
a\neq 2\text{ and }a\neq -1
Graph
Share
Copied to clipboard
\left(a-2\right)\times 2+\left(x-2\right)\left(a+1\right)=0
Variable a cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(x-2\right), the least common multiple of x-2,a-2.
2a-4+\left(x-2\right)\left(a+1\right)=0
Use the distributive property to multiply a-2 by 2.
2a-4+xa+x-2a-2=0
Use the distributive property to multiply x-2 by a+1.
-4+xa+x-2=0
Combine 2a and -2a to get 0.
-6+xa+x=0
Subtract 2 from -4 to get -6.
xa+x=6
Add 6 to both sides. Anything plus zero gives itself.
xa=6-x
Subtract x from both sides.
\frac{xa}{x}=\frac{6-x}{x}
Divide both sides by x.
a=\frac{6-x}{x}
Dividing by x undoes the multiplication by x.
a=-1+\frac{6}{x}
Divide 6-x by x.
a=-1+\frac{6}{x}\text{, }a\neq 2
Variable a cannot be equal to 2.
\left(a-2\right)\times 2+\left(x-2\right)\left(a+1\right)=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(x-2\right), the least common multiple of x-2,a-2.
2a-4+\left(x-2\right)\left(a+1\right)=0
Use the distributive property to multiply a-2 by 2.
2a-4+xa+x-2a-2=0
Use the distributive property to multiply x-2 by a+1.
-4+xa+x-2=0
Combine 2a and -2a to get 0.
-6+xa+x=0
Subtract 2 from -4 to get -6.
xa+x=6
Add 6 to both sides. Anything plus zero gives itself.
\left(a+1\right)x=6
Combine all terms containing x.
\frac{\left(a+1\right)x}{a+1}=\frac{6}{a+1}
Divide both sides by 1+a.
x=\frac{6}{a+1}
Dividing by 1+a undoes the multiplication by 1+a.
x=\frac{6}{a+1}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}