Solve for x
x=\frac{\sqrt{5}-1}{2}\approx 0.618033989
x=\frac{-\sqrt{5}-1}{2}\approx -1.618033989
Graph
Share
Copied to clipboard
2-\left(x+1\right)\left(x+1\right)=\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x-1.
2-\left(x+1\right)^{2}=\left(x-1\right)\left(x+1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
2-\left(x^{2}+2x+1\right)=\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2-x^{2}-2x-1=\left(x-1\right)\left(x+1\right)
To find the opposite of x^{2}+2x+1, find the opposite of each term.
1-x^{2}-2x=\left(x-1\right)\left(x+1\right)
Subtract 1 from 2 to get 1.
1-x^{2}-2x=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-x^{2}-2x-x^{2}=-1
Subtract x^{2} from both sides.
1-2x^{2}-2x=-1
Combine -x^{2} and -x^{2} to get -2x^{2}.
1-2x^{2}-2x+1=0
Add 1 to both sides.
2-2x^{2}-2x=0
Add 1 and 1 to get 2.
-2x^{2}-2x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 2}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 2}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 2}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2\left(-2\right)}
Multiply 8 times 2.
x=\frac{-\left(-2\right)±\sqrt{20}}{2\left(-2\right)}
Add 4 to 16.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2\left(-2\right)}
Take the square root of 20.
x=\frac{2±2\sqrt{5}}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{5}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{5}+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{5}}{-4} when ± is plus. Add 2 to 2\sqrt{5}.
x=\frac{-\sqrt{5}-1}{2}
Divide 2+2\sqrt{5} by -4.
x=\frac{2-2\sqrt{5}}{-4}
Now solve the equation x=\frac{2±2\sqrt{5}}{-4} when ± is minus. Subtract 2\sqrt{5} from 2.
x=\frac{\sqrt{5}-1}{2}
Divide 2-2\sqrt{5} by -4.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
The equation is now solved.
2-\left(x+1\right)\left(x+1\right)=\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x-1.
2-\left(x+1\right)^{2}=\left(x-1\right)\left(x+1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
2-\left(x^{2}+2x+1\right)=\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2-x^{2}-2x-1=\left(x-1\right)\left(x+1\right)
To find the opposite of x^{2}+2x+1, find the opposite of each term.
1-x^{2}-2x=\left(x-1\right)\left(x+1\right)
Subtract 1 from 2 to get 1.
1-x^{2}-2x=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-x^{2}-2x-x^{2}=-1
Subtract x^{2} from both sides.
1-2x^{2}-2x=-1
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}-2x=-1-1
Subtract 1 from both sides.
-2x^{2}-2x=-2
Subtract 1 from -1 to get -2.
\frac{-2x^{2}-2x}{-2}=-\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=-\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=-\frac{2}{-2}
Divide -2 by -2.
x^{2}+x=1
Divide -2 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{5}}{2} x+\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}-1}{2} x=\frac{-\sqrt{5}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}