Evaluate
\frac{1}{a}
Differentiate w.r.t. a
-\frac{1}{a^{2}}
Share
Copied to clipboard
\frac{2\left(3n-15\right)}{\left(n-5\right)\times 6a}
Divide \frac{2}{n-5} by \frac{6a}{3n-15} by multiplying \frac{2}{n-5} by the reciprocal of \frac{6a}{3n-15}.
\frac{3n-15}{3a\left(n-5\right)}
Cancel out 2 in both numerator and denominator.
\frac{3\left(n-5\right)}{3a\left(n-5\right)}
Factor the expressions that are not already factored.
\frac{1}{a}
Cancel out 3\left(n-5\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(3n-15\right)}{\left(n-5\right)\times 6a})
Divide \frac{2}{n-5} by \frac{6a}{3n-15} by multiplying \frac{2}{n-5} by the reciprocal of \frac{6a}{3n-15}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3n-15}{3a\left(n-5\right)})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3\left(n-5\right)}{3a\left(n-5\right)})
Factor the expressions that are not already factored in \frac{3n-15}{3a\left(n-5\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
Cancel out 3\left(n-5\right) in both numerator and denominator.
-a^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-a^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}