Solve for c_1
c_{1}=\frac{25}{61}+\frac{31}{61}i\approx 0.409836066+0.508196721i
Share
Copied to clipboard
2=c_{1}\times \frac{11}{2+3i}+c_{1}\times \frac{1}{3-2i}
Variable c_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c_{1}.
2=c_{1}\times \frac{11\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}+c_{1}\times \frac{1}{3-2i}
Multiply both numerator and denominator of \frac{11}{2+3i} by the complex conjugate of the denominator, 2-3i.
2=c_{1}\times \frac{22-33i}{13}+c_{1}\times \frac{1}{3-2i}
Do the multiplications in \frac{11\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}.
2=c_{1}\left(\frac{22}{13}-\frac{33}{13}i\right)+c_{1}\times \frac{1}{3-2i}
Divide 22-33i by 13 to get \frac{22}{13}-\frac{33}{13}i.
2=c_{1}\left(\frac{22}{13}-\frac{33}{13}i\right)+c_{1}\times \frac{1\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Multiply both numerator and denominator of \frac{1}{3-2i} by the complex conjugate of the denominator, 3+2i.
2=c_{1}\left(\frac{22}{13}-\frac{33}{13}i\right)+c_{1}\times \frac{3+2i}{13}
Do the multiplications in \frac{1\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}.
2=c_{1}\left(\frac{22}{13}-\frac{33}{13}i\right)+c_{1}\left(\frac{3}{13}+\frac{2}{13}i\right)
Divide 3+2i by 13 to get \frac{3}{13}+\frac{2}{13}i.
2=\left(\frac{25}{13}-\frac{31}{13}i\right)c_{1}
Combine c_{1}\left(\frac{22}{13}-\frac{33}{13}i\right) and c_{1}\left(\frac{3}{13}+\frac{2}{13}i\right) to get \left(\frac{25}{13}-\frac{31}{13}i\right)c_{1}.
\left(\frac{25}{13}-\frac{31}{13}i\right)c_{1}=2
Swap sides so that all variable terms are on the left hand side.
c_{1}=\frac{2}{\frac{25}{13}-\frac{31}{13}i}
Divide both sides by \frac{25}{13}-\frac{31}{13}i.
c_{1}=\frac{2\left(\frac{25}{13}+\frac{31}{13}i\right)}{\left(\frac{25}{13}-\frac{31}{13}i\right)\left(\frac{25}{13}+\frac{31}{13}i\right)}
Multiply both numerator and denominator of \frac{2}{\frac{25}{13}-\frac{31}{13}i} by the complex conjugate of the denominator, \frac{25}{13}+\frac{31}{13}i.
c_{1}=\frac{\frac{50}{13}+\frac{62}{13}i}{\frac{122}{13}}
Do the multiplications in \frac{2\left(\frac{25}{13}+\frac{31}{13}i\right)}{\left(\frac{25}{13}-\frac{31}{13}i\right)\left(\frac{25}{13}+\frac{31}{13}i\right)}.
c_{1}=\frac{25}{61}+\frac{31}{61}i
Divide \frac{50}{13}+\frac{62}{13}i by \frac{122}{13} to get \frac{25}{61}+\frac{31}{61}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}