Evaluate
\frac{295}{28}\approx 10.535714286
Factor
\frac{5 \cdot 59}{2 ^ {2} \cdot 7} = 10\frac{15}{28} = 10.535714285714286
Share
Copied to clipboard
\frac{2}{7}+\frac{3\times 15}{2\times 2}-\frac{5}{10}-\frac{1}{2}
Multiply \frac{3}{2} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{7}+\frac{45}{4}-\frac{5}{10}-\frac{1}{2}
Do the multiplications in the fraction \frac{3\times 15}{2\times 2}.
\frac{8}{28}+\frac{315}{28}-\frac{5}{10}-\frac{1}{2}
Least common multiple of 7 and 4 is 28. Convert \frac{2}{7} and \frac{45}{4} to fractions with denominator 28.
\frac{8+315}{28}-\frac{5}{10}-\frac{1}{2}
Since \frac{8}{28} and \frac{315}{28} have the same denominator, add them by adding their numerators.
\frac{323}{28}-\frac{5}{10}-\frac{1}{2}
Add 8 and 315 to get 323.
\frac{323}{28}-\frac{1}{2}-\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{323}{28}-\frac{14}{28}-\frac{1}{2}
Least common multiple of 28 and 2 is 28. Convert \frac{323}{28} and \frac{1}{2} to fractions with denominator 28.
\frac{323-14}{28}-\frac{1}{2}
Since \frac{323}{28} and \frac{14}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{309}{28}-\frac{1}{2}
Subtract 14 from 323 to get 309.
\frac{309}{28}-\frac{14}{28}
Least common multiple of 28 and 2 is 28. Convert \frac{309}{28} and \frac{1}{2} to fractions with denominator 28.
\frac{309-14}{28}
Since \frac{309}{28} and \frac{14}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{295}{28}
Subtract 14 from 309 to get 295.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}