Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(6+\sqrt{5}\right)}{\left(6-\sqrt{5}\right)\left(6+\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{6-\sqrt{5}} by multiplying numerator and denominator by 6+\sqrt{5}.
\frac{2\left(6+\sqrt{5}\right)}{6^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(6-\sqrt{5}\right)\left(6+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(6+\sqrt{5}\right)}{36-5}
Square 6. Square \sqrt{5}.
\frac{2\left(6+\sqrt{5}\right)}{31}
Subtract 5 from 36 to get 31.
\frac{12+2\sqrt{5}}{31}
Use the distributive property to multiply 2 by 6+\sqrt{5}.