Solve for n
n=11
n=12
Share
Copied to clipboard
\left(6n-36\right)\times 2=30\left(n-6\right)\left(n-5\right)\times \frac{1}{30}+30
Variable n cannot be equal to any of the values 5,6 since division by zero is not defined. Multiply both sides of the equation by 30\left(n-6\right)\left(n-5\right), the least common multiple of 5\left(n-5\right),30,\left(n-5\right)\left(n-6\right).
12n-72=30\left(n-6\right)\left(n-5\right)\times \frac{1}{30}+30
Use the distributive property to multiply 6n-36 by 2.
12n-72=\left(n-6\right)\left(n-5\right)+30
Multiply 30 and \frac{1}{30} to get 1.
12n-72=n^{2}-11n+30+30
Use the distributive property to multiply n-6 by n-5 and combine like terms.
12n-72=n^{2}-11n+60
Add 30 and 30 to get 60.
12n-72-n^{2}=-11n+60
Subtract n^{2} from both sides.
12n-72-n^{2}+11n=60
Add 11n to both sides.
23n-72-n^{2}=60
Combine 12n and 11n to get 23n.
23n-72-n^{2}-60=0
Subtract 60 from both sides.
23n-132-n^{2}=0
Subtract 60 from -72 to get -132.
-n^{2}+23n-132=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-23±\sqrt{23^{2}-4\left(-1\right)\left(-132\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 23 for b, and -132 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-23±\sqrt{529-4\left(-1\right)\left(-132\right)}}{2\left(-1\right)}
Square 23.
n=\frac{-23±\sqrt{529+4\left(-132\right)}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-23±\sqrt{529-528}}{2\left(-1\right)}
Multiply 4 times -132.
n=\frac{-23±\sqrt{1}}{2\left(-1\right)}
Add 529 to -528.
n=\frac{-23±1}{2\left(-1\right)}
Take the square root of 1.
n=\frac{-23±1}{-2}
Multiply 2 times -1.
n=-\frac{22}{-2}
Now solve the equation n=\frac{-23±1}{-2} when ± is plus. Add -23 to 1.
n=11
Divide -22 by -2.
n=-\frac{24}{-2}
Now solve the equation n=\frac{-23±1}{-2} when ± is minus. Subtract 1 from -23.
n=12
Divide -24 by -2.
n=11 n=12
The equation is now solved.
\left(6n-36\right)\times 2=30\left(n-6\right)\left(n-5\right)\times \frac{1}{30}+30
Variable n cannot be equal to any of the values 5,6 since division by zero is not defined. Multiply both sides of the equation by 30\left(n-6\right)\left(n-5\right), the least common multiple of 5\left(n-5\right),30,\left(n-5\right)\left(n-6\right).
12n-72=30\left(n-6\right)\left(n-5\right)\times \frac{1}{30}+30
Use the distributive property to multiply 6n-36 by 2.
12n-72=\left(n-6\right)\left(n-5\right)+30
Multiply 30 and \frac{1}{30} to get 1.
12n-72=n^{2}-11n+30+30
Use the distributive property to multiply n-6 by n-5 and combine like terms.
12n-72=n^{2}-11n+60
Add 30 and 30 to get 60.
12n-72-n^{2}=-11n+60
Subtract n^{2} from both sides.
12n-72-n^{2}+11n=60
Add 11n to both sides.
23n-72-n^{2}=60
Combine 12n and 11n to get 23n.
23n-n^{2}=60+72
Add 72 to both sides.
23n-n^{2}=132
Add 60 and 72 to get 132.
-n^{2}+23n=132
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-n^{2}+23n}{-1}=\frac{132}{-1}
Divide both sides by -1.
n^{2}+\frac{23}{-1}n=\frac{132}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}-23n=\frac{132}{-1}
Divide 23 by -1.
n^{2}-23n=-132
Divide 132 by -1.
n^{2}-23n+\left(-\frac{23}{2}\right)^{2}=-132+\left(-\frac{23}{2}\right)^{2}
Divide -23, the coefficient of the x term, by 2 to get -\frac{23}{2}. Then add the square of -\frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-23n+\frac{529}{4}=-132+\frac{529}{4}
Square -\frac{23}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-23n+\frac{529}{4}=\frac{1}{4}
Add -132 to \frac{529}{4}.
\left(n-\frac{23}{2}\right)^{2}=\frac{1}{4}
Factor n^{2}-23n+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{23}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
n-\frac{23}{2}=\frac{1}{2} n-\frac{23}{2}=-\frac{1}{2}
Simplify.
n=12 n=11
Add \frac{23}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}