\frac { 2 } { 5 } x - \frac { 4 } { 3 } = \frac { 3 } { 4 } ( \frac { 16 } { 9 } x - \frac { 8 } { 15 }
Solve for x
x=-1
Graph
Share
Copied to clipboard
\frac{2}{5}x-\frac{4}{3}=\frac{3}{4}\times \frac{16}{9}x+\frac{3}{4}\left(-\frac{8}{15}\right)
Use the distributive property to multiply \frac{3}{4} by \frac{16}{9}x-\frac{8}{15}.
\frac{2}{5}x-\frac{4}{3}=\frac{3\times 16}{4\times 9}x+\frac{3}{4}\left(-\frac{8}{15}\right)
Multiply \frac{3}{4} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{5}x-\frac{4}{3}=\frac{48}{36}x+\frac{3}{4}\left(-\frac{8}{15}\right)
Do the multiplications in the fraction \frac{3\times 16}{4\times 9}.
\frac{2}{5}x-\frac{4}{3}=\frac{4}{3}x+\frac{3}{4}\left(-\frac{8}{15}\right)
Reduce the fraction \frac{48}{36} to lowest terms by extracting and canceling out 12.
\frac{2}{5}x-\frac{4}{3}=\frac{4}{3}x+\frac{3\left(-8\right)}{4\times 15}
Multiply \frac{3}{4} times -\frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{5}x-\frac{4}{3}=\frac{4}{3}x+\frac{-24}{60}
Do the multiplications in the fraction \frac{3\left(-8\right)}{4\times 15}.
\frac{2}{5}x-\frac{4}{3}=\frac{4}{3}x-\frac{2}{5}
Reduce the fraction \frac{-24}{60} to lowest terms by extracting and canceling out 12.
\frac{2}{5}x-\frac{4}{3}-\frac{4}{3}x=-\frac{2}{5}
Subtract \frac{4}{3}x from both sides.
-\frac{14}{15}x-\frac{4}{3}=-\frac{2}{5}
Combine \frac{2}{5}x and -\frac{4}{3}x to get -\frac{14}{15}x.
-\frac{14}{15}x=-\frac{2}{5}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-\frac{14}{15}x=-\frac{6}{15}+\frac{20}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{2}{5} and \frac{4}{3} to fractions with denominator 15.
-\frac{14}{15}x=\frac{-6+20}{15}
Since -\frac{6}{15} and \frac{20}{15} have the same denominator, add them by adding their numerators.
-\frac{14}{15}x=\frac{14}{15}
Add -6 and 20 to get 14.
x=\frac{14}{15}\left(-\frac{15}{14}\right)
Multiply both sides by -\frac{15}{14}, the reciprocal of -\frac{14}{15}.
x=\frac{14\left(-15\right)}{15\times 14}
Multiply \frac{14}{15} times -\frac{15}{14} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-15}{15}
Cancel out 14 in both numerator and denominator.
x=-1
Divide -15 by 15 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}