Solve for x
x>\frac{7}{52}
Graph
Share
Copied to clipboard
\frac{2}{5}x+\frac{3}{4}<3x+\frac{4}{10}
Divide 6 by 2 to get 3.
\frac{2}{5}x+\frac{3}{4}<3x+\frac{2}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{5}x+\frac{3}{4}-3x<\frac{2}{5}
Subtract 3x from both sides.
-\frac{13}{5}x+\frac{3}{4}<\frac{2}{5}
Combine \frac{2}{5}x and -3x to get -\frac{13}{5}x.
-\frac{13}{5}x<\frac{2}{5}-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
-\frac{13}{5}x<\frac{8}{20}-\frac{15}{20}
Least common multiple of 5 and 4 is 20. Convert \frac{2}{5} and \frac{3}{4} to fractions with denominator 20.
-\frac{13}{5}x<\frac{8-15}{20}
Since \frac{8}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{5}x<-\frac{7}{20}
Subtract 15 from 8 to get -7.
x>-\frac{7}{20}\left(-\frac{5}{13}\right)
Multiply both sides by -\frac{5}{13}, the reciprocal of -\frac{13}{5}. Since -\frac{13}{5} is negative, the inequality direction is changed.
x>\frac{-7\left(-5\right)}{20\times 13}
Multiply -\frac{7}{20} times -\frac{5}{13} by multiplying numerator times numerator and denominator times denominator.
x>\frac{35}{260}
Do the multiplications in the fraction \frac{-7\left(-5\right)}{20\times 13}.
x>\frac{7}{52}
Reduce the fraction \frac{35}{260} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}