\frac { 2 } { 5 } - [ \frac { 4 } { 3 } + \frac { 8 } { 4 } - \frac { 4 } { 5 } )
Evaluate
-\frac{32}{15}\approx -2.133333333
Factor
-\frac{32}{15} = -2\frac{2}{15} = -2.1333333333333333
Share
Copied to clipboard
\frac{2}{5}-\left(\frac{4}{3}+2-\frac{4}{5}\right)
Divide 8 by 4 to get 2.
\frac{2}{5}-\left(\frac{4}{3}+\frac{6}{3}-\frac{4}{5}\right)
Convert 2 to fraction \frac{6}{3}.
\frac{2}{5}-\left(\frac{4+6}{3}-\frac{4}{5}\right)
Since \frac{4}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{2}{5}-\left(\frac{10}{3}-\frac{4}{5}\right)
Add 4 and 6 to get 10.
\frac{2}{5}-\left(\frac{50}{15}-\frac{12}{15}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{10}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{2}{5}-\frac{50-12}{15}
Since \frac{50}{15} and \frac{12}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{5}-\frac{38}{15}
Subtract 12 from 50 to get 38.
\frac{6}{15}-\frac{38}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{2}{5} and \frac{38}{15} to fractions with denominator 15.
\frac{6-38}{15}
Since \frac{6}{15} and \frac{38}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{32}{15}
Subtract 38 from 6 to get -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}