Evaluate
-\frac{12}{5}=-2.4
Factor
-\frac{12}{5} = -2\frac{2}{5} = -2.4
Share
Copied to clipboard
\frac{\frac{2}{5}\times \frac{3}{4}}{\left(-\frac{1}{2}\right)^{3}}
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{\frac{2\times 3}{5\times 4}}{\left(-\frac{1}{2}\right)^{3}}
Multiply \frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{6}{20}}{\left(-\frac{1}{2}\right)^{3}}
Do the multiplications in the fraction \frac{2\times 3}{5\times 4}.
\frac{\frac{3}{10}}{\left(-\frac{1}{2}\right)^{3}}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{10}}{-\frac{1}{8}}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{3}{10}\left(-8\right)
Divide \frac{3}{10} by -\frac{1}{8} by multiplying \frac{3}{10} by the reciprocal of -\frac{1}{8}.
\frac{3\left(-8\right)}{10}
Express \frac{3}{10}\left(-8\right) as a single fraction.
\frac{-24}{10}
Multiply 3 and -8 to get -24.
-\frac{12}{5}
Reduce the fraction \frac{-24}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}