Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{2\left(4-3\sqrt{2}\right)}{\left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right)}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Rationalize the denominator of \frac{2}{4+3\sqrt{2}} by multiplying numerator and denominator by 4-3\sqrt{2}.
\frac{2\left(4-3\sqrt{2}\right)}{4^{2}-\left(3\sqrt{2}\right)^{2}}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Consider \left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4-3\sqrt{2}\right)}{16-\left(3\sqrt{2}\right)^{2}}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Calculate 4 to the power of 2 and get 16.
\frac{2\left(4-3\sqrt{2}\right)}{16-3^{2}\left(\sqrt{2}\right)^{2}}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{2\left(4-3\sqrt{2}\right)}{16-9\left(\sqrt{2}\right)^{2}}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\left(4-3\sqrt{2}\right)}{16-9\times 2}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{2\left(4-3\sqrt{2}\right)}{16-18}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Multiply 9 and 2 to get 18.
\frac{2\left(4-3\sqrt{2}\right)}{-2}+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Subtract 18 from 16 to get -2.
-\left(4-3\sqrt{2}\right)+\frac{7}{3-\sqrt{2}}-\frac{31}{1+4\sqrt{2}}
Cancel out -2 and -2.
-\left(4-3\sqrt{2}\right)+\frac{7\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}-\frac{31}{1+4\sqrt{2}}
Rationalize the denominator of \frac{7}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
-\left(4-3\sqrt{2}\right)+\frac{7\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}-\frac{31}{1+4\sqrt{2}}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(4-3\sqrt{2}\right)+\frac{7\left(3+\sqrt{2}\right)}{9-2}-\frac{31}{1+4\sqrt{2}}
Square 3. Square \sqrt{2}.
-\left(4-3\sqrt{2}\right)+\frac{7\left(3+\sqrt{2}\right)}{7}-\frac{31}{1+4\sqrt{2}}
Subtract 2 from 9 to get 7.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31}{1+4\sqrt{2}}
Cancel out 7 and 7.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{\left(1+4\sqrt{2}\right)\left(1-4\sqrt{2}\right)}
Rationalize the denominator of \frac{31}{1+4\sqrt{2}} by multiplying numerator and denominator by 1-4\sqrt{2}.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1^{2}-\left(4\sqrt{2}\right)^{2}}
Consider \left(1+4\sqrt{2}\right)\left(1-4\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1-\left(4\sqrt{2}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1-4^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(4\sqrt{2}\right)^{2}.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1-16\left(\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1-16\times 2}
The square of \sqrt{2} is 2.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{1-32}
Multiply 16 and 2 to get 32.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\frac{31\left(1-4\sqrt{2}\right)}{-31}
Subtract 32 from 1 to get -31.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}-\left(-\left(1-4\sqrt{2}\right)\right)
Cancel out -31 and -31.
-\left(4-3\sqrt{2}\right)+3+\sqrt{2}+1-4\sqrt{2}
The opposite of -\left(1-4\sqrt{2}\right) is 1-4\sqrt{2}.
-\left(4-3\sqrt{2}\right)+4+\sqrt{2}-4\sqrt{2}
Add 3 and 1 to get 4.
-\left(4-3\sqrt{2}\right)+4-3\sqrt{2}
Combine \sqrt{2} and -4\sqrt{2} to get -3\sqrt{2}.
-4-\left(-3\sqrt{2}\right)+4-3\sqrt{2}
To find the opposite of 4-3\sqrt{2}, find the opposite of each term.
-4+3\sqrt{2}+4-3\sqrt{2}
The opposite of -3\sqrt{2} is 3\sqrt{2}.
3\sqrt{2}-3\sqrt{2}
Add -4 and 4 to get 0.
0
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}