Solve for x
x>\frac{67}{4}
Graph
Share
Copied to clipboard
\frac{2}{3}x>\frac{7}{6}+10
Add 10 to both sides.
\frac{2}{3}x>\frac{7}{6}+\frac{60}{6}
Convert 10 to fraction \frac{60}{6}.
\frac{2}{3}x>\frac{7+60}{6}
Since \frac{7}{6} and \frac{60}{6} have the same denominator, add them by adding their numerators.
\frac{2}{3}x>\frac{67}{6}
Add 7 and 60 to get 67.
x>\frac{67}{6}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}. Since \frac{2}{3} is positive, the inequality direction remains the same.
x>\frac{67\times 3}{6\times 2}
Multiply \frac{67}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x>\frac{201}{12}
Do the multiplications in the fraction \frac{67\times 3}{6\times 2}.
x>\frac{67}{4}
Reduce the fraction \frac{201}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}