Solve for x
x=\frac{\sqrt{6}-1}{2}\approx 0.724744871
x=\frac{-\sqrt{6}-1}{2}\approx -1.724744871
Graph
Share
Copied to clipboard
\frac{2}{3}x^{2}+\frac{2}{3}x-\frac{5}{6}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\times \frac{2}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{2}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{3} for a, \frac{2}{3} for b, and -\frac{5}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\times \frac{2}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{2}{3}}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-\frac{8}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{2}{3}}
Multiply -4 times \frac{2}{3}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4+20}{9}}}{2\times \frac{2}{3}}
Multiply -\frac{8}{3} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\sqrt{\frac{8}{3}}}{2\times \frac{2}{3}}
Add \frac{4}{9} to \frac{20}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\frac{2\sqrt{6}}{3}}{2\times \frac{2}{3}}
Take the square root of \frac{8}{3}.
x=\frac{-\frac{2}{3}±\frac{2\sqrt{6}}{3}}{\frac{4}{3}}
Multiply 2 times \frac{2}{3}.
x=\frac{2\sqrt{6}-2}{\frac{4}{3}\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{6}}{3}}{\frac{4}{3}} when ± is plus. Add -\frac{2}{3} to \frac{2\sqrt{6}}{3}.
x=\frac{\sqrt{6}-1}{2}
Divide \frac{-2+2\sqrt{6}}{3} by \frac{4}{3} by multiplying \frac{-2+2\sqrt{6}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{-2\sqrt{6}-2}{\frac{4}{3}\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{6}}{3}}{\frac{4}{3}} when ± is minus. Subtract \frac{2\sqrt{6}}{3} from -\frac{2}{3}.
x=\frac{-\sqrt{6}-1}{2}
Divide \frac{-2-2\sqrt{6}}{3} by \frac{4}{3} by multiplying \frac{-2-2\sqrt{6}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
The equation is now solved.
\frac{2}{3}x^{2}+\frac{2}{3}x-\frac{5}{6}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2}{3}x^{2}+\frac{2}{3}x-\frac{5}{6}-\left(-\frac{5}{6}\right)=-\left(-\frac{5}{6}\right)
Add \frac{5}{6} to both sides of the equation.
\frac{2}{3}x^{2}+\frac{2}{3}x=-\left(-\frac{5}{6}\right)
Subtracting -\frac{5}{6} from itself leaves 0.
\frac{2}{3}x^{2}+\frac{2}{3}x=\frac{5}{6}
Subtract -\frac{5}{6} from 0.
\frac{\frac{2}{3}x^{2}+\frac{2}{3}x}{\frac{2}{3}}=\frac{\frac{5}{6}}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{2}{3}}{\frac{2}{3}}x=\frac{\frac{5}{6}}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x^{2}+x=\frac{\frac{5}{6}}{\frac{2}{3}}
Divide \frac{2}{3} by \frac{2}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{3}.
x^{2}+x=\frac{5}{4}
Divide \frac{5}{6} by \frac{2}{3} by multiplying \frac{5}{6} by the reciprocal of \frac{2}{3}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{5}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{5+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{3}{2}
Add \frac{5}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{2}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{6}}{2} x+\frac{1}{2}=-\frac{\sqrt{6}}{2}
Simplify.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}