Solve for u
u=\frac{5}{13}\approx 0.384615385
Share
Copied to clipboard
\frac{2}{3}u-2+\frac{1}{5}u=-\frac{5}{3}
Add \frac{1}{5}u to both sides.
\frac{13}{15}u-2=-\frac{5}{3}
Combine \frac{2}{3}u and \frac{1}{5}u to get \frac{13}{15}u.
\frac{13}{15}u=-\frac{5}{3}+2
Add 2 to both sides.
\frac{13}{15}u=-\frac{5}{3}+\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{13}{15}u=\frac{-5+6}{3}
Since -\frac{5}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{13}{15}u=\frac{1}{3}
Add -5 and 6 to get 1.
u=\frac{1}{3}\times \frac{15}{13}
Multiply both sides by \frac{15}{13}, the reciprocal of \frac{13}{15}.
u=\frac{1\times 15}{3\times 13}
Multiply \frac{1}{3} times \frac{15}{13} by multiplying numerator times numerator and denominator times denominator.
u=\frac{15}{39}
Do the multiplications in the fraction \frac{1\times 15}{3\times 13}.
u=\frac{5}{13}
Reduce the fraction \frac{15}{39} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}