\frac { 2 } { 3 } a ( 6 a + 1 ) ( 6 a - 1 ) - 0,5 a ( 12 a ^ { 2 } + \frac { 2 } { 3 } )
Evaluate
a\left(18a^{2}-1\right)
Expand
18a^{3}-a
Share
Copied to clipboard
\left(4a^{2}+\frac{2}{3}a\right)\left(6a-1\right)-0,5a\left(12a^{2}+\frac{2}{3}\right)
Use the distributive property to multiply \frac{2}{3}a by 6a+1.
24a^{3}-\frac{2}{3}a-0,5a\left(12a^{2}+\frac{2}{3}\right)
Use the distributive property to multiply 4a^{2}+\frac{2}{3}a by 6a-1 and combine like terms.
24a^{3}-\frac{2}{3}a-6a^{3}-\frac{1}{3}a
Use the distributive property to multiply -0,5a by 12a^{2}+\frac{2}{3}.
18a^{3}-\frac{2}{3}a-\frac{1}{3}a
Combine 24a^{3} and -6a^{3} to get 18a^{3}.
18a^{3}-a
Combine -\frac{2}{3}a and -\frac{1}{3}a to get -a.
\left(4a^{2}+\frac{2}{3}a\right)\left(6a-1\right)-0,5a\left(12a^{2}+\frac{2}{3}\right)
Use the distributive property to multiply \frac{2}{3}a by 6a+1.
24a^{3}-\frac{2}{3}a-0,5a\left(12a^{2}+\frac{2}{3}\right)
Use the distributive property to multiply 4a^{2}+\frac{2}{3}a by 6a-1 and combine like terms.
24a^{3}-\frac{2}{3}a-6a^{3}-\frac{1}{3}a
Use the distributive property to multiply -0,5a by 12a^{2}+\frac{2}{3}.
18a^{3}-\frac{2}{3}a-\frac{1}{3}a
Combine 24a^{3} and -6a^{3} to get 18a^{3}.
18a^{3}-a
Combine -\frac{2}{3}a and -\frac{1}{3}a to get -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}