Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
Graph
Share
Copied to clipboard
2\left(x-5\right)+\left(1\times 3+1\right)\left(x+1\right)=27
Multiply both sides of the equation by 3.
2x-10+\left(1\times 3+1\right)\left(x+1\right)=27
Use the distributive property to multiply 2 by x-5.
2x-10+\left(3+1\right)\left(x+1\right)=27
Multiply 1 and 3 to get 3.
2x-10+4\left(x+1\right)=27
Add 3 and 1 to get 4.
2x-10+4x+4=27
Use the distributive property to multiply 4 by x+1.
6x-10+4=27
Combine 2x and 4x to get 6x.
6x-6=27
Add -10 and 4 to get -6.
6x=27+6
Add 6 to both sides.
6x=33
Add 27 and 6 to get 33.
x=\frac{33}{6}
Divide both sides by 6.
x=\frac{11}{2}
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}