Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
4\left(x-2-\frac{x-1}{2}\right)\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
4x-8+4\left(-\frac{x-1}{2}\right)\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Use the distributive property to multiply 4 by x-2-\frac{x-1}{2}.
4x-8-2\left(x-1\right)\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Cancel out 2, the greatest common factor in 4 and 2.
4x-8-2x+2\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Use the distributive property to multiply -2 by x-1.
2x-8+2\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Combine 4x and -2x to get 2x.
2x-6\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\left(x-\frac{x}{2}\right)\right)+12\left(\frac{2}{3}x-1\right)
Add -8 and 2 to get -6.
2x-6\geq 6\left(1-\frac{2}{3}x-\frac{2}{3}\times \frac{1}{2}x\right)+12\left(\frac{2}{3}x-1\right)
Combine x and -\frac{x}{2} to get \frac{1}{2}x.
2x-6\geq 6\left(1-\frac{2}{3}x-\frac{2\times 1}{3\times 2}x\right)+12\left(\frac{2}{3}x-1\right)
Multiply \frac{2}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x-6\geq 6\left(1-\frac{2}{3}x-\frac{1}{3}x\right)+12\left(\frac{2}{3}x-1\right)
Cancel out 2 in both numerator and denominator.
2x-6\geq 6\left(1-x\right)+12\left(\frac{2}{3}x-1\right)
Combine -\frac{2}{3}x and -\frac{1}{3}x to get -x.
2x-6\geq 6-6x+12\left(\frac{2}{3}x-1\right)
Use the distributive property to multiply 6 by 1-x.
2x-6\geq 6-6x+12\times \frac{2}{3}x-12
Use the distributive property to multiply 12 by \frac{2}{3}x-1.
2x-6\geq 6-6x+\frac{12\times 2}{3}x-12
Express 12\times \frac{2}{3} as a single fraction.
2x-6\geq 6-6x+\frac{24}{3}x-12
Multiply 12 and 2 to get 24.
2x-6\geq 6-6x+8x-12
Divide 24 by 3 to get 8.
2x-6\geq 6+2x-12
Combine -6x and 8x to get 2x.
2x-6\geq -6+2x
Subtract 12 from 6 to get -6.
2x-6-2x\geq -6
Subtract 2x from both sides.
-6\geq -6
Combine 2x and -2x to get 0.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}