Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{3}w+\frac{2}{3}\left(-5\right)=\frac{3}{4}\left(w+2\right)
Use the distributive property to multiply \frac{2}{3} by w-5.
\frac{2}{3}w+\frac{2\left(-5\right)}{3}=\frac{3}{4}\left(w+2\right)
Express \frac{2}{3}\left(-5\right) as a single fraction.
\frac{2}{3}w+\frac{-10}{3}=\frac{3}{4}\left(w+2\right)
Multiply 2 and -5 to get -10.
\frac{2}{3}w-\frac{10}{3}=\frac{3}{4}\left(w+2\right)
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{2}{3}w-\frac{10}{3}=\frac{3}{4}w+\frac{3}{4}\times 2
Use the distributive property to multiply \frac{3}{4} by w+2.
\frac{2}{3}w-\frac{10}{3}=\frac{3}{4}w+\frac{3\times 2}{4}
Express \frac{3}{4}\times 2 as a single fraction.
\frac{2}{3}w-\frac{10}{3}=\frac{3}{4}w+\frac{6}{4}
Multiply 3 and 2 to get 6.
\frac{2}{3}w-\frac{10}{3}=\frac{3}{4}w+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{3}w-\frac{10}{3}-\frac{3}{4}w=\frac{3}{2}
Subtract \frac{3}{4}w from both sides.
-\frac{1}{12}w-\frac{10}{3}=\frac{3}{2}
Combine \frac{2}{3}w and -\frac{3}{4}w to get -\frac{1}{12}w.
-\frac{1}{12}w=\frac{3}{2}+\frac{10}{3}
Add \frac{10}{3} to both sides.
-\frac{1}{12}w=\frac{9}{6}+\frac{20}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{10}{3} to fractions with denominator 6.
-\frac{1}{12}w=\frac{9+20}{6}
Since \frac{9}{6} and \frac{20}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{12}w=\frac{29}{6}
Add 9 and 20 to get 29.
w=\frac{29}{6}\left(-12\right)
Multiply both sides by -12, the reciprocal of -\frac{1}{12}.
w=\frac{29\left(-12\right)}{6}
Express \frac{29}{6}\left(-12\right) as a single fraction.
w=\frac{-348}{6}
Multiply 29 and -12 to get -348.
w=-58
Divide -348 by 6 to get -58.