Solve for a
a=-4
a = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{2}{3}\left(a^{2}+4a+4\right)-\frac{5}{3}\left(a+2\right)-4=2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
\frac{2}{3}a^{2}+\frac{8}{3}a+\frac{8}{3}-\frac{5}{3}\left(a+2\right)-4=2
Use the distributive property to multiply \frac{2}{3} by a^{2}+4a+4.
\frac{2}{3}a^{2}+\frac{8}{3}a+\frac{8}{3}-\frac{5}{3}a-\frac{10}{3}-4=2
Use the distributive property to multiply -\frac{5}{3} by a+2.
\frac{2}{3}a^{2}+a+\frac{8}{3}-\frac{10}{3}-4=2
Combine \frac{8}{3}a and -\frac{5}{3}a to get a.
\frac{2}{3}a^{2}+a-\frac{2}{3}-4=2
Subtract \frac{10}{3} from \frac{8}{3} to get -\frac{2}{3}.
\frac{2}{3}a^{2}+a-\frac{14}{3}=2
Subtract 4 from -\frac{2}{3} to get -\frac{14}{3}.
\frac{2}{3}a^{2}+a-\frac{14}{3}-2=0
Subtract 2 from both sides.
\frac{2}{3}a^{2}+a-\frac{20}{3}=0
Subtract 2 from -\frac{14}{3} to get -\frac{20}{3}.
a=\frac{-1±\sqrt{1^{2}-4\times \frac{2}{3}\left(-\frac{20}{3}\right)}}{2\times \frac{2}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{3} for a, 1 for b, and -\frac{20}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\times \frac{2}{3}\left(-\frac{20}{3}\right)}}{2\times \frac{2}{3}}
Square 1.
a=\frac{-1±\sqrt{1-\frac{8}{3}\left(-\frac{20}{3}\right)}}{2\times \frac{2}{3}}
Multiply -4 times \frac{2}{3}.
a=\frac{-1±\sqrt{1+\frac{160}{9}}}{2\times \frac{2}{3}}
Multiply -\frac{8}{3} times -\frac{20}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{-1±\sqrt{\frac{169}{9}}}{2\times \frac{2}{3}}
Add 1 to \frac{160}{9}.
a=\frac{-1±\frac{13}{3}}{2\times \frac{2}{3}}
Take the square root of \frac{169}{9}.
a=\frac{-1±\frac{13}{3}}{\frac{4}{3}}
Multiply 2 times \frac{2}{3}.
a=\frac{\frac{10}{3}}{\frac{4}{3}}
Now solve the equation a=\frac{-1±\frac{13}{3}}{\frac{4}{3}} when ± is plus. Add -1 to \frac{13}{3}.
a=\frac{5}{2}
Divide \frac{10}{3} by \frac{4}{3} by multiplying \frac{10}{3} by the reciprocal of \frac{4}{3}.
a=-\frac{\frac{16}{3}}{\frac{4}{3}}
Now solve the equation a=\frac{-1±\frac{13}{3}}{\frac{4}{3}} when ± is minus. Subtract \frac{13}{3} from -1.
a=-4
Divide -\frac{16}{3} by \frac{4}{3} by multiplying -\frac{16}{3} by the reciprocal of \frac{4}{3}.
a=\frac{5}{2} a=-4
The equation is now solved.
\frac{2}{3}\left(a^{2}+4a+4\right)-\frac{5}{3}\left(a+2\right)-4=2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
\frac{2}{3}a^{2}+\frac{8}{3}a+\frac{8}{3}-\frac{5}{3}\left(a+2\right)-4=2
Use the distributive property to multiply \frac{2}{3} by a^{2}+4a+4.
\frac{2}{3}a^{2}+\frac{8}{3}a+\frac{8}{3}-\frac{5}{3}a-\frac{10}{3}-4=2
Use the distributive property to multiply -\frac{5}{3} by a+2.
\frac{2}{3}a^{2}+a+\frac{8}{3}-\frac{10}{3}-4=2
Combine \frac{8}{3}a and -\frac{5}{3}a to get a.
\frac{2}{3}a^{2}+a-\frac{2}{3}-4=2
Subtract \frac{10}{3} from \frac{8}{3} to get -\frac{2}{3}.
\frac{2}{3}a^{2}+a-\frac{14}{3}=2
Subtract 4 from -\frac{2}{3} to get -\frac{14}{3}.
\frac{2}{3}a^{2}+a=2+\frac{14}{3}
Add \frac{14}{3} to both sides.
\frac{2}{3}a^{2}+a=\frac{20}{3}
Add 2 and \frac{14}{3} to get \frac{20}{3}.
\frac{\frac{2}{3}a^{2}+a}{\frac{2}{3}}=\frac{\frac{20}{3}}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{1}{\frac{2}{3}}a=\frac{\frac{20}{3}}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
a^{2}+\frac{3}{2}a=\frac{\frac{20}{3}}{\frac{2}{3}}
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
a^{2}+\frac{3}{2}a=10
Divide \frac{20}{3} by \frac{2}{3} by multiplying \frac{20}{3} by the reciprocal of \frac{2}{3}.
a^{2}+\frac{3}{2}a+\left(\frac{3}{4}\right)^{2}=10+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{3}{2}a+\frac{9}{16}=10+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{3}{2}a+\frac{9}{16}=\frac{169}{16}
Add 10 to \frac{9}{16}.
\left(a+\frac{3}{4}\right)^{2}=\frac{169}{16}
Factor a^{2}+\frac{3}{2}a+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Take the square root of both sides of the equation.
a+\frac{3}{4}=\frac{13}{4} a+\frac{3}{4}=-\frac{13}{4}
Simplify.
a=\frac{5}{2} a=-4
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}