Solve for n
n = -\frac{19}{4} = -4\frac{3}{4} = -4.75
Quiz
Linear Equation
5 problems similar to:
\frac { 2 } { 3 } ( 3 n - 15 ) = \frac { 3 } { 4 } ( 4 n - 7 )
Share
Copied to clipboard
\frac{2}{3}\times 3n+\frac{2}{3}\left(-15\right)=\frac{3}{4}\left(4n-7\right)
Use the distributive property to multiply \frac{2}{3} by 3n-15.
2n+\frac{2}{3}\left(-15\right)=\frac{3}{4}\left(4n-7\right)
Cancel out 3 and 3.
2n+\frac{2\left(-15\right)}{3}=\frac{3}{4}\left(4n-7\right)
Express \frac{2}{3}\left(-15\right) as a single fraction.
2n+\frac{-30}{3}=\frac{3}{4}\left(4n-7\right)
Multiply 2 and -15 to get -30.
2n-10=\frac{3}{4}\left(4n-7\right)
Divide -30 by 3 to get -10.
2n-10=\frac{3}{4}\times 4n+\frac{3}{4}\left(-7\right)
Use the distributive property to multiply \frac{3}{4} by 4n-7.
2n-10=3n+\frac{3}{4}\left(-7\right)
Cancel out 4 and 4.
2n-10=3n+\frac{3\left(-7\right)}{4}
Express \frac{3}{4}\left(-7\right) as a single fraction.
2n-10=3n+\frac{-21}{4}
Multiply 3 and -7 to get -21.
2n-10=3n-\frac{21}{4}
Fraction \frac{-21}{4} can be rewritten as -\frac{21}{4} by extracting the negative sign.
2n-10-3n=-\frac{21}{4}
Subtract 3n from both sides.
-n-10=-\frac{21}{4}
Combine 2n and -3n to get -n.
-n=-\frac{21}{4}+10
Add 10 to both sides.
-n=-\frac{21}{4}+\frac{40}{4}
Convert 10 to fraction \frac{40}{4}.
-n=\frac{-21+40}{4}
Since -\frac{21}{4} and \frac{40}{4} have the same denominator, add them by adding their numerators.
-n=\frac{19}{4}
Add -21 and 40 to get 19.
n=-\frac{19}{4}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}