Solve for x
x<\frac{2}{3}
Graph
Share
Copied to clipboard
\frac{2}{3}\times 11+\frac{2}{3}\left(-9\right)x>5x
Use the distributive property to multiply \frac{2}{3} by 11-9x.
\frac{2\times 11}{3}+\frac{2}{3}\left(-9\right)x>5x
Express \frac{2}{3}\times 11 as a single fraction.
\frac{22}{3}+\frac{2}{3}\left(-9\right)x>5x
Multiply 2 and 11 to get 22.
\frac{22}{3}+\frac{2\left(-9\right)}{3}x>5x
Express \frac{2}{3}\left(-9\right) as a single fraction.
\frac{22}{3}+\frac{-18}{3}x>5x
Multiply 2 and -9 to get -18.
\frac{22}{3}-6x>5x
Divide -18 by 3 to get -6.
\frac{22}{3}-6x-5x>0
Subtract 5x from both sides.
\frac{22}{3}-11x>0
Combine -6x and -5x to get -11x.
-11x>-\frac{22}{3}
Subtract \frac{22}{3} from both sides. Anything subtracted from zero gives its negation.
x<\frac{-\frac{22}{3}}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
x<\frac{-22}{3\left(-11\right)}
Express \frac{-\frac{22}{3}}{-11} as a single fraction.
x<\frac{-22}{-33}
Multiply 3 and -11 to get -33.
x<\frac{2}{3}
Reduce the fraction \frac{-22}{-33} to lowest terms by extracting and canceling out -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}