Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{3}\times \frac{1}{8}+\frac{2}{3}\times 4t-\frac{3}{8}=\frac{5}{8}
Use the distributive property to multiply \frac{2}{3} by \frac{1}{8}+4t.
\frac{2\times 1}{3\times 8}+\frac{2}{3}\times 4t-\frac{3}{8}=\frac{5}{8}
Multiply \frac{2}{3} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{24}+\frac{2}{3}\times 4t-\frac{3}{8}=\frac{5}{8}
Do the multiplications in the fraction \frac{2\times 1}{3\times 8}.
\frac{1}{12}+\frac{2}{3}\times 4t-\frac{3}{8}=\frac{5}{8}
Reduce the fraction \frac{2}{24} to lowest terms by extracting and canceling out 2.
\frac{1}{12}+\frac{2\times 4}{3}t-\frac{3}{8}=\frac{5}{8}
Express \frac{2}{3}\times 4 as a single fraction.
\frac{1}{12}+\frac{8}{3}t-\frac{3}{8}=\frac{5}{8}
Multiply 2 and 4 to get 8.
\frac{2}{24}+\frac{8}{3}t-\frac{9}{24}=\frac{5}{8}
Least common multiple of 12 and 8 is 24. Convert \frac{1}{12} and \frac{3}{8} to fractions with denominator 24.
\frac{2-9}{24}+\frac{8}{3}t=\frac{5}{8}
Since \frac{2}{24} and \frac{9}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{24}+\frac{8}{3}t=\frac{5}{8}
Subtract 9 from 2 to get -7.
\frac{8}{3}t=\frac{5}{8}+\frac{7}{24}
Add \frac{7}{24} to both sides.
\frac{8}{3}t=\frac{15}{24}+\frac{7}{24}
Least common multiple of 8 and 24 is 24. Convert \frac{5}{8} and \frac{7}{24} to fractions with denominator 24.
\frac{8}{3}t=\frac{15+7}{24}
Since \frac{15}{24} and \frac{7}{24} have the same denominator, add them by adding their numerators.
\frac{8}{3}t=\frac{22}{24}
Add 15 and 7 to get 22.
\frac{8}{3}t=\frac{11}{12}
Reduce the fraction \frac{22}{24} to lowest terms by extracting and canceling out 2.
t=\frac{11}{12}\times \frac{3}{8}
Multiply both sides by \frac{3}{8}, the reciprocal of \frac{8}{3}.
t=\frac{11\times 3}{12\times 8}
Multiply \frac{11}{12} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
t=\frac{33}{96}
Do the multiplications in the fraction \frac{11\times 3}{12\times 8}.
t=\frac{11}{32}
Reduce the fraction \frac{33}{96} to lowest terms by extracting and canceling out 3.