Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 5}{3\times 7}+\frac{1}{4}\times \frac{2}{7}-\frac{7}{3}\times \frac{1}{4}
Multiply \frac{2}{3} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{21}+\frac{1}{4}\times \frac{2}{7}-\frac{7}{3}\times \frac{1}{4}
Do the multiplications in the fraction \frac{2\times 5}{3\times 7}.
\frac{10}{21}+\frac{1\times 2}{4\times 7}-\frac{7}{3}\times \frac{1}{4}
Multiply \frac{1}{4} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{21}+\frac{2}{28}-\frac{7}{3}\times \frac{1}{4}
Do the multiplications in the fraction \frac{1\times 2}{4\times 7}.
\frac{10}{21}+\frac{1}{14}-\frac{7}{3}\times \frac{1}{4}
Reduce the fraction \frac{2}{28} to lowest terms by extracting and canceling out 2.
\frac{20}{42}+\frac{3}{42}-\frac{7}{3}\times \frac{1}{4}
Least common multiple of 21 and 14 is 42. Convert \frac{10}{21} and \frac{1}{14} to fractions with denominator 42.
\frac{20+3}{42}-\frac{7}{3}\times \frac{1}{4}
Since \frac{20}{42} and \frac{3}{42} have the same denominator, add them by adding their numerators.
\frac{23}{42}-\frac{7}{3}\times \frac{1}{4}
Add 20 and 3 to get 23.
\frac{23}{42}-\frac{7\times 1}{3\times 4}
Multiply \frac{7}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{23}{42}-\frac{7}{12}
Do the multiplications in the fraction \frac{7\times 1}{3\times 4}.
\frac{46}{84}-\frac{49}{84}
Least common multiple of 42 and 12 is 84. Convert \frac{23}{42} and \frac{7}{12} to fractions with denominator 84.
\frac{46-49}{84}
Since \frac{46}{84} and \frac{49}{84} have the same denominator, subtract them by subtracting their numerators.
\frac{-3}{84}
Subtract 49 from 46 to get -3.
-\frac{1}{28}
Reduce the fraction \frac{-3}{84} to lowest terms by extracting and canceling out 3.