Evaluate
\frac{7a}{6}-\frac{41b}{12}
Expand
\frac{7a}{6}-\frac{41b}{12}
Quiz
Algebra
\frac { 2 } { 3 } [ 4 a - 3 b ) + \frac { 1 } { 3 } b - \frac { 1 } { 4 } ( 6 a + 7 b ) ]
Share
Copied to clipboard
\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Use the distributive property to multiply \frac{2}{3} by 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\times 4 as a single fraction.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and 4 to get 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\left(-3\right) as a single fraction.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and -3 to get -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Divide -6 by 3 to get -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Combine -2b and \frac{1}{3}b to get -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Use the distributive property to multiply -\frac{1}{4} by 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Express -\frac{1}{4}\times 6 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Express -\frac{1}{4}\times 7 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Combine \frac{8}{3}a and -\frac{3}{2}a to get \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Combine -\frac{5}{3}b and -\frac{7}{4}b to get -\frac{41}{12}b.
\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Use the distributive property to multiply \frac{2}{3} by 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\times 4 as a single fraction.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and 4 to get 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\left(-3\right) as a single fraction.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and -3 to get -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Divide -6 by 3 to get -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Combine -2b and \frac{1}{3}b to get -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Use the distributive property to multiply -\frac{1}{4} by 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Express -\frac{1}{4}\times 6 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Express -\frac{1}{4}\times 7 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Combine \frac{8}{3}a and -\frac{3}{2}a to get \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Combine -\frac{5}{3}b and -\frac{7}{4}b to get -\frac{41}{12}b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}