Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Use the distributive property to multiply \frac{2}{3} by 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\times 4 as a single fraction.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and 4 to get 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\left(-3\right) as a single fraction.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and -3 to get -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Divide -6 by 3 to get -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Combine -2b and \frac{1}{3}b to get -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Use the distributive property to multiply -\frac{1}{4} by 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Express -\frac{1}{4}\times 6 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Express -\frac{1}{4}\times 7 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Combine \frac{8}{3}a and -\frac{3}{2}a to get \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Combine -\frac{5}{3}b and -\frac{7}{4}b to get -\frac{41}{12}b.
\frac{2}{3}\times 4a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Use the distributive property to multiply \frac{2}{3} by 4a-3b.
\frac{2\times 4}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\times 4 as a single fraction.
\frac{8}{3}a+\frac{2}{3}\left(-3\right)b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and 4 to get 8.
\frac{8}{3}a+\frac{2\left(-3\right)}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Express \frac{2}{3}\left(-3\right) as a single fraction.
\frac{8}{3}a+\frac{-6}{3}b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Multiply 2 and -3 to get -6.
\frac{8}{3}a-2b+\frac{1}{3}b-\frac{1}{4}\left(6a+7b\right)
Divide -6 by 3 to get -2.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\left(6a+7b\right)
Combine -2b and \frac{1}{3}b to get -\frac{5}{3}b.
\frac{8}{3}a-\frac{5}{3}b-\frac{1}{4}\times 6a-\frac{1}{4}\times 7b
Use the distributive property to multiply -\frac{1}{4} by 6a+7b.
\frac{8}{3}a-\frac{5}{3}b+\frac{-6}{4}a-\frac{1}{4}\times 7b
Express -\frac{1}{4}\times 6 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{1}{4}\times 7b
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a+\frac{-7}{4}b
Express -\frac{1}{4}\times 7 as a single fraction.
\frac{8}{3}a-\frac{5}{3}b-\frac{3}{2}a-\frac{7}{4}b
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
\frac{7}{6}a-\frac{5}{3}b-\frac{7}{4}b
Combine \frac{8}{3}a and -\frac{3}{2}a to get \frac{7}{6}a.
\frac{7}{6}a-\frac{41}{12}b
Combine -\frac{5}{3}b and -\frac{7}{4}b to get -\frac{41}{12}b.