Solve for x_55
x_{55}=-\frac{n^{3}}{9}+\frac{n}{9}+\frac{1}{6}
n\neq 0\text{ and }|n|\neq 1
Share
Copied to clipboard
2n\left(n-1\right)\left(n+1\right)=3\left(1-6x_{55}\right)
Multiply both sides of the equation by 3n\left(n-1\right)\left(n+1\right), the least common multiple of 3,n\left(n^{2}-1\right).
\left(2n^{2}-2n\right)\left(n+1\right)=3\left(1-6x_{55}\right)
Use the distributive property to multiply 2n by n-1.
2n^{3}-2n=3\left(1-6x_{55}\right)
Use the distributive property to multiply 2n^{2}-2n by n+1 and combine like terms.
2n^{3}-2n=3-18x_{55}
Use the distributive property to multiply 3 by 1-6x_{55}.
3-18x_{55}=2n^{3}-2n
Swap sides so that all variable terms are on the left hand side.
-18x_{55}=2n^{3}-2n-3
Subtract 3 from both sides.
\frac{-18x_{55}}{-18}=\frac{2n^{3}-2n-3}{-18}
Divide both sides by -18.
x_{55}=\frac{2n^{3}-2n-3}{-18}
Dividing by -18 undoes the multiplication by -18.
x_{55}=-\frac{n^{3}}{9}+\frac{n}{9}+\frac{1}{6}
Divide 2n^{3}-2n-3 by -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}