Evaluate
-\frac{1}{18}\approx -0.055555556
Factor
-\frac{1}{18} = -0.05555555555555555
Share
Copied to clipboard
\frac{2}{3}+\left(\frac{2}{12}-\frac{15}{12}\right)\times \frac{2}{3}
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{5}{4} to fractions with denominator 12.
\frac{2}{3}+\frac{2-15}{12}\times \frac{2}{3}
Since \frac{2}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{13}{12}\times \frac{2}{3}
Subtract 15 from 2 to get -13.
\frac{2}{3}+\frac{-13\times 2}{12\times 3}
Multiply -\frac{13}{12} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{-26}{36}
Do the multiplications in the fraction \frac{-13\times 2}{12\times 3}.
\frac{2}{3}-\frac{13}{18}
Reduce the fraction \frac{-26}{36} to lowest terms by extracting and canceling out 2.
\frac{12}{18}-\frac{13}{18}
Least common multiple of 3 and 18 is 18. Convert \frac{2}{3} and \frac{13}{18} to fractions with denominator 18.
\frac{12-13}{18}
Since \frac{12}{18} and \frac{13}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{18}
Subtract 13 from 12 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}