Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+a^{2}}{3}=a
Since \frac{2}{3} and \frac{a^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}+\frac{1}{3}a^{2}=a
Divide each term of 2+a^{2} by 3 to get \frac{2}{3}+\frac{1}{3}a^{2}.
\frac{2}{3}+\frac{1}{3}a^{2}-a=0
Subtract a from both sides.
\frac{1}{3}a^{2}-a+\frac{2}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{3}\times \frac{2}{3}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -1 for b, and \frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1-\frac{4}{3}\times \frac{2}{3}}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
a=\frac{-\left(-1\right)±\sqrt{1-\frac{8}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{-\left(-1\right)±\sqrt{\frac{1}{9}}}{2\times \frac{1}{3}}
Add 1 to -\frac{8}{9}.
a=\frac{-\left(-1\right)±\frac{1}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{1}{9}.
a=\frac{1±\frac{1}{3}}{2\times \frac{1}{3}}
The opposite of -1 is 1.
a=\frac{1±\frac{1}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
a=\frac{\frac{4}{3}}{\frac{2}{3}}
Now solve the equation a=\frac{1±\frac{1}{3}}{\frac{2}{3}} when ± is plus. Add 1 to \frac{1}{3}.
a=2
Divide \frac{4}{3} by \frac{2}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{2}{3}.
a=\frac{\frac{2}{3}}{\frac{2}{3}}
Now solve the equation a=\frac{1±\frac{1}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{1}{3} from 1.
a=1
Divide \frac{2}{3} by \frac{2}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{3}.
a=2 a=1
The equation is now solved.
\frac{2+a^{2}}{3}=a
Since \frac{2}{3} and \frac{a^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}+\frac{1}{3}a^{2}=a
Divide each term of 2+a^{2} by 3 to get \frac{2}{3}+\frac{1}{3}a^{2}.
\frac{2}{3}+\frac{1}{3}a^{2}-a=0
Subtract a from both sides.
\frac{1}{3}a^{2}-a=-\frac{2}{3}
Subtract \frac{2}{3} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{3}a^{2}-a}{\frac{1}{3}}=-\frac{\frac{2}{3}}{\frac{1}{3}}
Multiply both sides by 3.
a^{2}+\left(-\frac{1}{\frac{1}{3}}\right)a=-\frac{\frac{2}{3}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
a^{2}-3a=-\frac{\frac{2}{3}}{\frac{1}{3}}
Divide -1 by \frac{1}{3} by multiplying -1 by the reciprocal of \frac{1}{3}.
a^{2}-3a=-2
Divide -\frac{2}{3} by \frac{1}{3} by multiplying -\frac{2}{3} by the reciprocal of \frac{1}{3}.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-3a+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(a-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{1}{2} a-\frac{3}{2}=-\frac{1}{2}
Simplify.
a=2 a=1
Add \frac{3}{2} to both sides of the equation.