Evaluate
\frac{151}{60}\approx 2.516666667
Factor
\frac{151}{2 ^ {2} \cdot 3 \cdot 5} = 2\frac{31}{60} = 2.5166666666666666
Share
Copied to clipboard
\frac{2}{3}+\frac{1\times 2}{4\times 5}-\frac{3}{4}+\frac{5}{2}
Multiply \frac{1}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{2}{20}-\frac{3}{4}+\frac{5}{2}
Do the multiplications in the fraction \frac{1\times 2}{4\times 5}.
\frac{2}{3}+\frac{1}{10}-\frac{3}{4}+\frac{5}{2}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{20}{30}+\frac{3}{30}-\frac{3}{4}+\frac{5}{2}
Least common multiple of 3 and 10 is 30. Convert \frac{2}{3} and \frac{1}{10} to fractions with denominator 30.
\frac{20+3}{30}-\frac{3}{4}+\frac{5}{2}
Since \frac{20}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{23}{30}-\frac{3}{4}+\frac{5}{2}
Add 20 and 3 to get 23.
\frac{46}{60}-\frac{45}{60}+\frac{5}{2}
Least common multiple of 30 and 4 is 60. Convert \frac{23}{30} and \frac{3}{4} to fractions with denominator 60.
\frac{46-45}{60}+\frac{5}{2}
Since \frac{46}{60} and \frac{45}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{60}+\frac{5}{2}
Subtract 45 from 46 to get 1.
\frac{1}{60}+\frac{150}{60}
Least common multiple of 60 and 2 is 60. Convert \frac{1}{60} and \frac{5}{2} to fractions with denominator 60.
\frac{1+150}{60}
Since \frac{1}{60} and \frac{150}{60} have the same denominator, add them by adding their numerators.
\frac{151}{60}
Add 1 and 150 to get 151.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}