Solve for x
x=\frac{8}{9}\approx 0.888888889
Graph
Share
Copied to clipboard
3x\times \frac{2}{3}+\frac{5}{4}x-3=3x\times \frac{1}{3}-\frac{9}{8}x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
2x+\frac{5}{4}x-3=3x\times \frac{1}{3}-\frac{9}{8}x
Cancel out 3 and 3.
\frac{13}{4}x-3=3x\times \frac{1}{3}-\frac{9}{8}x
Combine 2x and \frac{5}{4}x to get \frac{13}{4}x.
\frac{13}{4}x-3=x-\frac{9}{8}x
Cancel out 3 and 3.
\frac{13}{4}x-3=-\frac{1}{8}x
Combine x and -\frac{9}{8}x to get -\frac{1}{8}x.
\frac{13}{4}x-3+\frac{1}{8}x=0
Add \frac{1}{8}x to both sides.
\frac{27}{8}x-3=0
Combine \frac{13}{4}x and \frac{1}{8}x to get \frac{27}{8}x.
\frac{27}{8}x=3
Add 3 to both sides. Anything plus zero gives itself.
x=3\times \frac{8}{27}
Multiply both sides by \frac{8}{27}, the reciprocal of \frac{27}{8}.
x=\frac{3\times 8}{27}
Express 3\times \frac{8}{27} as a single fraction.
x=\frac{24}{27}
Multiply 3 and 8 to get 24.
x=\frac{8}{9}
Reduce the fraction \frac{24}{27} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}