Evaluate
-\frac{10}{9}\approx -1.111111111
Factor
-\frac{10}{9} = -1\frac{1}{9} = -1.1111111111111112
Share
Copied to clipboard
\frac{2\times 3}{27}\left(-5\right)
Express \frac{2}{27}\times 3 as a single fraction.
\frac{6}{27}\left(-5\right)
Multiply 2 and 3 to get 6.
\frac{2}{9}\left(-5\right)
Reduce the fraction \frac{6}{27} to lowest terms by extracting and canceling out 3.
\frac{2\left(-5\right)}{9}
Express \frac{2}{9}\left(-5\right) as a single fraction.
\frac{-10}{9}
Multiply 2 and -5 to get -10.
-\frac{10}{9}
Fraction \frac{-10}{9} can be rewritten as -\frac{10}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}