Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{\left(x+1\right)\left(2x+3\right)}-\frac{1}{\left(x-2\right)\left(2x+3\right)}+\frac{3}{x^{2}-x-2}
Factor 2x^{2}+5x+3. Factor 2x^{2}-x-6.
\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}-\frac{x+1}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3}{x^{2}-x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(2x+3\right) and \left(x-2\right)\left(2x+3\right) is \left(x-2\right)\left(x+1\right)\left(2x+3\right). Multiply \frac{2}{\left(x+1\right)\left(2x+3\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)\left(2x+3\right)} times \frac{x+1}{x+1}.
\frac{2\left(x-2\right)-\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3}{x^{2}-x-2}
Since \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)} and \frac{x+1}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x-1}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3}{x^{2}-x-2}
Do the multiplications in 2\left(x-2\right)-\left(x+1\right).
\frac{x-5}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3}{x^{2}-x-2}
Combine like terms in 2x-4-x-1.
\frac{x-5}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}
Factor x^{2}-x-2.
\frac{x-5}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}+\frac{3\left(2x+3\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+1\right)\left(2x+3\right) and \left(x-2\right)\left(x+1\right) is \left(x-2\right)\left(x+1\right)\left(2x+3\right). Multiply \frac{3}{\left(x-2\right)\left(x+1\right)} times \frac{2x+3}{2x+3}.
\frac{x-5+3\left(2x+3\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}
Since \frac{x-5}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)} and \frac{3\left(2x+3\right)}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x-5+6x+9}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}
Do the multiplications in x-5+3\left(2x+3\right).
\frac{7x+4}{\left(x-2\right)\left(x+1\right)\left(2x+3\right)}
Combine like terms in x-5+6x+9.
\frac{7x+4}{2x^{3}+x^{2}-7x-6}
Expand \left(x-2\right)\left(x+1\right)\left(2x+3\right).