Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(2-\sqrt{14}\right)}{\left(2+\sqrt{14}\right)\left(2-\sqrt{14}\right)}
Rationalize the denominator of \frac{2}{2+\sqrt{14}} by multiplying numerator and denominator by 2-\sqrt{14}.
\frac{2\left(2-\sqrt{14}\right)}{2^{2}-\left(\sqrt{14}\right)^{2}}
Consider \left(2+\sqrt{14}\right)\left(2-\sqrt{14}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2-\sqrt{14}\right)}{4-14}
Square 2. Square \sqrt{14}.
\frac{2\left(2-\sqrt{14}\right)}{-10}
Subtract 14 from 4 to get -10.
-\frac{1}{5}\left(2-\sqrt{14}\right)
Divide 2\left(2-\sqrt{14}\right) by -10 to get -\frac{1}{5}\left(2-\sqrt{14}\right).
-\frac{1}{5}\times 2-\frac{1}{5}\left(-1\right)\sqrt{14}
Use the distributive property to multiply -\frac{1}{5} by 2-\sqrt{14}.
\frac{-2}{5}-\frac{1}{5}\left(-1\right)\sqrt{14}
Express -\frac{1}{5}\times 2 as a single fraction.
-\frac{2}{5}-\frac{1}{5}\left(-1\right)\sqrt{14}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
-\frac{2}{5}+\frac{1}{5}\sqrt{14}
Multiply -\frac{1}{5} and -1 to get \frac{1}{5}.