Evaluate
\frac{\sqrt{6}+1428}{339863}\approx 0.0042089
Quiz
Arithmetic
5 problems similar to:
\frac { 2 } { 12 - \sqrt { 6 } \div 3 + 58 \div 2 ( 8 - 6 ) 8 }
Share
Copied to clipboard
\frac{2}{12-\frac{\sqrt{6}}{3}+29\left(8-6\right)\times 8}
Divide 58 by 2 to get 29.
\frac{2}{12-\frac{\sqrt{6}}{3}+29\times 2\times 8}
Subtract 6 from 8 to get 2.
\frac{2}{12-\frac{\sqrt{6}}{3}+58\times 8}
Multiply 29 and 2 to get 58.
\frac{2}{12-\frac{\sqrt{6}}{3}+464}
Multiply 58 and 8 to get 464.
\frac{2}{476-\frac{\sqrt{6}}{3}}
Add 12 and 464 to get 476.
\frac{2}{\frac{476\times 3}{3}-\frac{\sqrt{6}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 476 times \frac{3}{3}.
\frac{2}{\frac{476\times 3-\sqrt{6}}{3}}
Since \frac{476\times 3}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{\frac{1428-\sqrt{6}}{3}}
Do the multiplications in 476\times 3-\sqrt{6}.
\frac{2\times 3}{1428-\sqrt{6}}
Divide 2 by \frac{1428-\sqrt{6}}{3} by multiplying 2 by the reciprocal of \frac{1428-\sqrt{6}}{3}.
\frac{2\times 3\left(1428+\sqrt{6}\right)}{\left(1428-\sqrt{6}\right)\left(1428+\sqrt{6}\right)}
Rationalize the denominator of \frac{2\times 3}{1428-\sqrt{6}} by multiplying numerator and denominator by 1428+\sqrt{6}.
\frac{2\times 3\left(1428+\sqrt{6}\right)}{1428^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(1428-\sqrt{6}\right)\left(1428+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\times 3\left(1428+\sqrt{6}\right)}{2039184-6}
Square 1428. Square \sqrt{6}.
\frac{2\times 3\left(1428+\sqrt{6}\right)}{2039178}
Subtract 6 from 2039184 to get 2039178.
\frac{6\left(1428+\sqrt{6}\right)}{2039178}
Multiply 2 and 3 to get 6.
\frac{1}{339863}\left(1428+\sqrt{6}\right)
Divide 6\left(1428+\sqrt{6}\right) by 2039178 to get \frac{1}{339863}\left(1428+\sqrt{6}\right).
\frac{1}{339863}\times 1428+\frac{1}{339863}\sqrt{6}
Use the distributive property to multiply \frac{1}{339863} by 1428+\sqrt{6}.
\frac{1428}{339863}+\frac{1}{339863}\sqrt{6}
Multiply \frac{1}{339863} and 1428 to get \frac{1428}{339863}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}