Evaluate
\frac{43}{1100}\approx 0.039090909
Factor
\frac{43}{11 \cdot 2 ^ {2} \cdot 5 ^ {2}} = 0.03909090909090909
Share
Copied to clipboard
\frac{2}{11}\times \frac{1}{25}+\frac{4}{11}\times 0.05+\frac{5}{11}\times 0.03
Convert decimal number 0.04 to fraction \frac{4}{100}. Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
\frac{2\times 1}{11\times 25}+\frac{4}{11}\times 0.05+\frac{5}{11}\times 0.03
Multiply \frac{2}{11} times \frac{1}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{275}+\frac{4}{11}\times 0.05+\frac{5}{11}\times 0.03
Do the multiplications in the fraction \frac{2\times 1}{11\times 25}.
\frac{2}{275}+\frac{4}{11}\times \frac{1}{20}+\frac{5}{11}\times 0.03
Convert decimal number 0.05 to fraction \frac{5}{100}. Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{2}{275}+\frac{4\times 1}{11\times 20}+\frac{5}{11}\times 0.03
Multiply \frac{4}{11} times \frac{1}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{275}+\frac{4}{220}+\frac{5}{11}\times 0.03
Do the multiplications in the fraction \frac{4\times 1}{11\times 20}.
\frac{2}{275}+\frac{1}{55}+\frac{5}{11}\times 0.03
Reduce the fraction \frac{4}{220} to lowest terms by extracting and canceling out 4.
\frac{2}{275}+\frac{5}{275}+\frac{5}{11}\times 0.03
Least common multiple of 275 and 55 is 275. Convert \frac{2}{275} and \frac{1}{55} to fractions with denominator 275.
\frac{2+5}{275}+\frac{5}{11}\times 0.03
Since \frac{2}{275} and \frac{5}{275} have the same denominator, add them by adding their numerators.
\frac{7}{275}+\frac{5}{11}\times 0.03
Add 2 and 5 to get 7.
\frac{7}{275}+\frac{5}{11}\times \frac{3}{100}
Convert decimal number 0.03 to fraction \frac{3}{100}.
\frac{7}{275}+\frac{5\times 3}{11\times 100}
Multiply \frac{5}{11} times \frac{3}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{275}+\frac{15}{1100}
Do the multiplications in the fraction \frac{5\times 3}{11\times 100}.
\frac{7}{275}+\frac{3}{220}
Reduce the fraction \frac{15}{1100} to lowest terms by extracting and canceling out 5.
\frac{28}{1100}+\frac{15}{1100}
Least common multiple of 275 and 220 is 1100. Convert \frac{7}{275} and \frac{3}{220} to fractions with denominator 1100.
\frac{28+15}{1100}
Since \frac{28}{1100} and \frac{15}{1100} have the same denominator, add them by adding their numerators.
\frac{43}{1100}
Add 28 and 15 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}