Evaluate
\frac{315}{22}\approx 14.318181818
Factor
\frac{3 ^ {2} \cdot 5 \cdot 7}{2 \cdot 11} = 14\frac{7}{22} = 14.318181818181818
Share
Copied to clipboard
\frac{2}{11}\times 6\sqrt{3}\times \frac{5}{8}\sqrt{147}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{2\times 6}{11}\sqrt{3}\times \frac{5}{8}\sqrt{147}
Express \frac{2}{11}\times 6 as a single fraction.
\frac{12}{11}\sqrt{3}\times \frac{5}{8}\sqrt{147}
Multiply 2 and 6 to get 12.
\frac{12\times 5}{11\times 8}\sqrt{3}\sqrt{147}
Multiply \frac{12}{11} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{88}\sqrt{3}\sqrt{147}
Do the multiplications in the fraction \frac{12\times 5}{11\times 8}.
\frac{15}{22}\sqrt{3}\sqrt{147}
Reduce the fraction \frac{60}{88} to lowest terms by extracting and canceling out 4.
\frac{15}{22}\sqrt{3}\times 7\sqrt{3}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
\frac{15\times 7}{22}\sqrt{3}\sqrt{3}
Express \frac{15}{22}\times 7 as a single fraction.
\frac{105}{22}\sqrt{3}\sqrt{3}
Multiply 15 and 7 to get 105.
\frac{105}{22}\times 3
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{105\times 3}{22}
Express \frac{105}{22}\times 3 as a single fraction.
\frac{315}{22}
Multiply 105 and 3 to get 315.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}