Evaluate
\frac{4y+63}{5}
Expand
\frac{4y+63}{5}
Graph
Share
Copied to clipboard
\frac{1}{5}\left(38-y\right)-\left(-y-5\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}\times 38+\frac{1}{5}\left(-1\right)y-\left(-y-5\right)
Use the distributive property to multiply \frac{1}{5} by 38-y.
\frac{38}{5}+\frac{1}{5}\left(-1\right)y-\left(-y-5\right)
Multiply \frac{1}{5} and 38 to get \frac{38}{5}.
\frac{38}{5}-\frac{1}{5}y-\left(-y-5\right)
Multiply \frac{1}{5} and -1 to get -\frac{1}{5}.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)-\left(-5\right)
To find the opposite of -y-5, find the opposite of each term.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)+5
The opposite of -5 is 5.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)+\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
\frac{38+25}{5}-\frac{1}{5}y-\left(-y\right)
Since \frac{38}{5} and \frac{25}{5} have the same denominator, add them by adding their numerators.
\frac{63}{5}-\frac{1}{5}y-\left(-y\right)
Add 38 and 25 to get 63.
\frac{63}{5}-\frac{1}{5}y+y
Multiply -1 and -1 to get 1.
\frac{63}{5}+\frac{4}{5}y
Combine -\frac{1}{5}y and y to get \frac{4}{5}y.
\frac{1}{5}\left(38-y\right)-\left(-y-5\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{5}\times 38+\frac{1}{5}\left(-1\right)y-\left(-y-5\right)
Use the distributive property to multiply \frac{1}{5} by 38-y.
\frac{38}{5}+\frac{1}{5}\left(-1\right)y-\left(-y-5\right)
Multiply \frac{1}{5} and 38 to get \frac{38}{5}.
\frac{38}{5}-\frac{1}{5}y-\left(-y-5\right)
Multiply \frac{1}{5} and -1 to get -\frac{1}{5}.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)-\left(-5\right)
To find the opposite of -y-5, find the opposite of each term.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)+5
The opposite of -5 is 5.
\frac{38}{5}-\frac{1}{5}y-\left(-y\right)+\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
\frac{38+25}{5}-\frac{1}{5}y-\left(-y\right)
Since \frac{38}{5} and \frac{25}{5} have the same denominator, add them by adding their numerators.
\frac{63}{5}-\frac{1}{5}y-\left(-y\right)
Add 38 and 25 to get 63.
\frac{63}{5}-\frac{1}{5}y+y
Multiply -1 and -1 to get 1.
\frac{63}{5}+\frac{4}{5}y
Combine -\frac{1}{5}y and y to get \frac{4}{5}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}