Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(1+\sqrt{-3}\right)}{\left(1-\sqrt{-3}\right)\left(1+\sqrt{-3}\right)}
Rationalize the denominator of \frac{2}{1-\sqrt{-3}} by multiplying numerator and denominator by 1+\sqrt{-3}.
\frac{2\left(1+\sqrt{-3}\right)}{1^{2}-\left(\sqrt{-3}\right)^{2}}
Consider \left(1-\sqrt{-3}\right)\left(1+\sqrt{-3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1+\sqrt{-3}\right)}{1+3}
Square 1. Square \sqrt{-3}.
\frac{2\left(1+\sqrt{-3}\right)}{4}
Subtract -3 from 1 to get 4.
\frac{1}{2}\left(1+\sqrt{-3}\right)
Divide 2\left(1+\sqrt{-3}\right) by 4 to get \frac{1}{2}\left(1+\sqrt{-3}\right).
\frac{1}{2}+\frac{1}{2}\sqrt{-3}
Use the distributive property to multiply \frac{1}{2} by 1+\sqrt{-3}.