Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

132\left(2x+\frac{1}{3}\right)=11\left(2\times 6+1\right)-66\left(\frac{x}{2}-\frac{5}{33}\right)
Multiply both sides of the equation by 66, the least common multiple of 3,6,2,33.
264x+132\times \frac{1}{3}=11\left(2\times 6+1\right)-66\left(\frac{x}{2}-\frac{5}{33}\right)
Use the distributive property to multiply 132 by 2x+\frac{1}{3}.
264x+\frac{132}{3}=11\left(2\times 6+1\right)-66\left(\frac{x}{2}-\frac{5}{33}\right)
Multiply 132 and \frac{1}{3} to get \frac{132}{3}.
264x+44=11\left(2\times 6+1\right)-66\left(\frac{x}{2}-\frac{5}{33}\right)
Divide 132 by 3 to get 44.
264x+44=11\left(12+1\right)-66\left(\frac{x}{2}-\frac{5}{33}\right)
Multiply 2 and 6 to get 12.
264x+44=11\times 13-66\left(\frac{x}{2}-\frac{5}{33}\right)
Add 12 and 1 to get 13.
264x+44=143-66\left(\frac{x}{2}-\frac{5}{33}\right)
Multiply 11 and 13 to get 143.
264x+44=143-66\left(\frac{33x}{66}-\frac{5\times 2}{66}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 33 is 66. Multiply \frac{x}{2} times \frac{33}{33}. Multiply \frac{5}{33} times \frac{2}{2}.
264x+44=143-66\times \frac{33x-5\times 2}{66}
Since \frac{33x}{66} and \frac{5\times 2}{66} have the same denominator, subtract them by subtracting their numerators.
264x+44=143-66\times \frac{33x-10}{66}
Do the multiplications in 33x-5\times 2.
264x+44=143-\frac{66\left(33x-10\right)}{66}
Express 66\times \frac{33x-10}{66} as a single fraction.
264x+44=143-\left(33x-10\right)
Cancel out 66 and 66.
264x+44=143-33x-\left(-10\right)
To find the opposite of 33x-10, find the opposite of each term.
264x+44=143-33x+10
The opposite of -10 is 10.
264x+44=153-33x
Add 143 and 10 to get 153.
264x+44+33x=153
Add 33x to both sides.
297x+44=153
Combine 264x and 33x to get 297x.
297x=153-44
Subtract 44 from both sides.
297x=109
Subtract 44 from 153 to get 109.
x=\frac{109}{297}
Divide both sides by 297.