Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2\times \frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
Anything divided by one gives itself.
2\times \frac{\frac{3}{3}-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
2\times \frac{\frac{3-\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{\frac{3-\sqrt{3}}{3}}{\frac{3}{3}+\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
2\times \frac{\frac{3-\sqrt{3}}{3}}{\frac{3+\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
2\times \frac{\left(3-\sqrt{3}\right)\times 3}{3\left(3+\sqrt{3}\right)}
Divide \frac{3-\sqrt{3}}{3} by \frac{3+\sqrt{3}}{3} by multiplying \frac{3-\sqrt{3}}{3} by the reciprocal of \frac{3+\sqrt{3}}{3}.
2\times \frac{-\sqrt{3}+3}{\sqrt{3}+3}
Cancel out 3 in both numerator and denominator.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{-\sqrt{3}+3}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{3}
Cancel out -6, the greatest common factor in 2 and -6.
\frac{-\left(\sqrt{3}\right)^{2}+3\sqrt{3}+3\sqrt{3}-9}{3}
Apply the distributive property by multiplying each term of -\sqrt{3}+3 by each term of \sqrt{3}-3.
\frac{-3+3\sqrt{3}+3\sqrt{3}-9}{3}
The square of \sqrt{3} is 3.
\frac{-3+6\sqrt{3}-9}{3}
Combine 3\sqrt{3} and 3\sqrt{3} to get 6\sqrt{3}.
\frac{-12+6\sqrt{3}}{3}
Subtract 9 from -3 to get -12.