Evaluate
4-2\sqrt{3}\approx 0.535898385
Factor
2 {(2 - \sqrt{3})} = 0.535898385
Share
Copied to clipboard
2\times \frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
Anything divided by one gives itself.
2\times \frac{\frac{3}{3}-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
2\times \frac{\frac{3-\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
2\times \frac{\frac{3-\sqrt{3}}{3}}{\frac{3}{3}+\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
2\times \frac{\frac{3-\sqrt{3}}{3}}{\frac{3+\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
2\times \frac{\left(3-\sqrt{3}\right)\times 3}{3\left(3+\sqrt{3}\right)}
Divide \frac{3-\sqrt{3}}{3} by \frac{3+\sqrt{3}}{3} by multiplying \frac{3-\sqrt{3}}{3} by the reciprocal of \frac{3+\sqrt{3}}{3}.
2\times \frac{-\sqrt{3}+3}{\sqrt{3}+3}
Cancel out 3 in both numerator and denominator.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{-\sqrt{3}+3}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
2\times \frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{\left(-\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}{3}
Cancel out -6, the greatest common factor in 2 and -6.
\frac{-\left(\sqrt{3}\right)^{2}+3\sqrt{3}+3\sqrt{3}-9}{3}
Apply the distributive property by multiplying each term of -\sqrt{3}+3 by each term of \sqrt{3}-3.
\frac{-3+3\sqrt{3}+3\sqrt{3}-9}{3}
The square of \sqrt{3} is 3.
\frac{-3+6\sqrt{3}-9}{3}
Combine 3\sqrt{3} and 3\sqrt{3} to get 6\sqrt{3}.
\frac{-12+6\sqrt{3}}{3}
Subtract 9 from -3 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}