Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2=3\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
2=\left(3x-9\right)\left(x+3\right)
Use the distributive property to multiply 3 by x-3.
2=3x^{2}-27
Use the distributive property to multiply 3x-9 by x+3 and combine like terms.
3x^{2}-27=2
Swap sides so that all variable terms are on the left hand side.
3x^{2}=2+27
Add 27 to both sides.
3x^{2}=29
Add 2 and 27 to get 29.
x^{2}=\frac{29}{3}
Divide both sides by 3.
x=\frac{\sqrt{87}}{3} x=-\frac{\sqrt{87}}{3}
Take the square root of both sides of the equation.
2=3\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
2=\left(3x-9\right)\left(x+3\right)
Use the distributive property to multiply 3 by x-3.
2=3x^{2}-27
Use the distributive property to multiply 3x-9 by x+3 and combine like terms.
3x^{2}-27=2
Swap sides so that all variable terms are on the left hand side.
3x^{2}-27-2=0
Subtract 2 from both sides.
3x^{2}-29=0
Subtract 2 from -27 to get -29.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-29\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-29\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-29\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{348}}{2\times 3}
Multiply -12 times -29.
x=\frac{0±2\sqrt{87}}{2\times 3}
Take the square root of 348.
x=\frac{0±2\sqrt{87}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{87}}{3}
Now solve the equation x=\frac{0±2\sqrt{87}}{6} when ± is plus.
x=-\frac{\sqrt{87}}{3}
Now solve the equation x=\frac{0±2\sqrt{87}}{6} when ± is minus.
x=\frac{\sqrt{87}}{3} x=-\frac{\sqrt{87}}{3}
The equation is now solved.