Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{2}.
\frac{2\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-\sqrt{2}\right)}{7-2}
Square \sqrt{7}. Square \sqrt{2}.
\frac{2\left(\sqrt{7}-\sqrt{2}\right)}{5}
Subtract 2 from 7 to get 5.
\frac{2\sqrt{7}-2\sqrt{2}}{5}
Use the distributive property to multiply 2 by \sqrt{7}-\sqrt{2}.