Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+7\sqrt{2}+\left(\sqrt{3}-1\right)^{0}-\left(\sqrt{3}-\sqrt{2}\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{3}+7\sqrt{2}+\left(\sqrt{3}-1\right)^{0}-\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{3}+7\sqrt{2}+1-\left(\sqrt{3}-\sqrt{2}\right)
Calculate \sqrt{3}-1 to the power of 0 and get 1.
\frac{2\sqrt{3}}{3}+\frac{3\left(7\sqrt{2}+1\right)}{3}-\left(\sqrt{3}-\sqrt{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 7\sqrt{2}+1 times \frac{3}{3}.
\frac{2\sqrt{3}+3\left(7\sqrt{2}+1\right)}{3}-\left(\sqrt{3}-\sqrt{2}\right)
Since \frac{2\sqrt{3}}{3} and \frac{3\left(7\sqrt{2}+1\right)}{3} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{3}+21\sqrt{2}+3}{3}-\left(\sqrt{3}-\sqrt{2}\right)
Do the multiplications in 2\sqrt{3}+3\left(7\sqrt{2}+1\right).
\frac{2\sqrt{3}+21\sqrt{2}+3}{3}-\frac{3\left(\sqrt{3}-\sqrt{2}\right)}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3}-\sqrt{2} times \frac{3}{3}.
\frac{2\sqrt{3}+21\sqrt{2}+3-3\left(\sqrt{3}-\sqrt{2}\right)}{3}
Since \frac{2\sqrt{3}+21\sqrt{2}+3}{3} and \frac{3\left(\sqrt{3}-\sqrt{2}\right)}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{3}+21\sqrt{2}+3-3\sqrt{3}+3\sqrt{2}}{3}
Do the multiplications in 2\sqrt{3}+21\sqrt{2}+3-3\left(\sqrt{3}-\sqrt{2}\right).
\frac{-\sqrt{3}+24\sqrt{2}+3}{3}
Do the calculations in 2\sqrt{3}+21\sqrt{2}+3-3\sqrt{3}+3\sqrt{2}.