Solve for v_2
v_{2}=-\frac{x+2\sqrt{2}}{-x+\sqrt{2}}
x\neq \sqrt{2}\text{ and }|x|\neq \frac{\sqrt{2}}{2}
Solve for x
x=-\frac{\sqrt{2}\left(v_{2}+2\right)}{1-v_{2}}
v_{2}\neq -5\text{ and }|v_{2}|\neq 1
Graph
Share
Copied to clipboard
\left(2x^{2}-1\right)\left(2^{\frac{1}{2}}x-1\right)^{-1}\times 2+v_{2}+1=\left(2x^{2}-1\right)\left(2^{\frac{1}{2}}x+1\right)^{-1}\left(v_{2}+1\right)
Multiply both sides of the equation by 2x^{2}-1.
\left(2x^{2}\left(2^{\frac{1}{2}}x-1\right)^{-1}-\left(2^{\frac{1}{2}}x-1\right)^{-1}\right)\times 2+v_{2}+1=\left(2x^{2}-1\right)\left(2^{\frac{1}{2}}x+1\right)^{-1}\left(v_{2}+1\right)
Use the distributive property to multiply 2x^{2}-1 by \left(2^{\frac{1}{2}}x-1\right)^{-1}.
4\left(2^{\frac{1}{2}}x-1\right)^{-1}x^{2}-2\left(2^{\frac{1}{2}}x-1\right)^{-1}+v_{2}+1=\left(2x^{2}-1\right)\left(2^{\frac{1}{2}}x+1\right)^{-1}\left(v_{2}+1\right)
Use the distributive property to multiply 2x^{2}\left(2^{\frac{1}{2}}x-1\right)^{-1}-\left(2^{\frac{1}{2}}x-1\right)^{-1} by 2.
4\left(2^{\frac{1}{2}}x-1\right)^{-1}x^{2}-2\left(2^{\frac{1}{2}}x-1\right)^{-1}+v_{2}+1=\left(2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}-\left(2^{\frac{1}{2}}x+1\right)^{-1}\right)\left(v_{2}+1\right)
Use the distributive property to multiply 2x^{2}-1 by \left(2^{\frac{1}{2}}x+1\right)^{-1}.
4\left(2^{\frac{1}{2}}x-1\right)^{-1}x^{2}-2\left(2^{\frac{1}{2}}x-1\right)^{-1}+v_{2}+1=2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}+2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}-\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}-\left(2^{\frac{1}{2}}x+1\right)^{-1}
Use the distributive property to multiply 2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}-\left(2^{\frac{1}{2}}x+1\right)^{-1} by v_{2}+1.
4\left(2^{\frac{1}{2}}x-1\right)^{-1}x^{2}-2\left(2^{\frac{1}{2}}x-1\right)^{-1}+v_{2}+1-2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}=2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}-\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}-\left(2^{\frac{1}{2}}x+1\right)^{-1}
Subtract 2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2} from both sides.
4\left(2^{\frac{1}{2}}x-1\right)^{-1}x^{2}-2\left(2^{\frac{1}{2}}x-1\right)^{-1}+v_{2}+1-2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}+\left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2}=2x^{2}\left(2^{\frac{1}{2}}x+1\right)^{-1}-\left(2^{\frac{1}{2}}x+1\right)^{-1}
Add \left(2^{\frac{1}{2}}x+1\right)^{-1}v_{2} to both sides.
4\times \frac{1}{\sqrt{2}x-1}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Reorder the terms.
4\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Rationalize the denominator of \frac{1}{\sqrt{2}x-1} by multiplying numerator and denominator by \sqrt{2}x+1.
4\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}x\right)^{2}-1^{2}}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Consider \left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Expand \left(\sqrt{2}x\right)^{2}.
4\times \frac{\sqrt{2}x+1}{2x^{2}-1^{2}}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
The square of \sqrt{2} is 2.
4\times \frac{\sqrt{2}x+1}{2x^{2}-1}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Calculate 1 to the power of 2 and get 1.
\frac{4\left(\sqrt{2}x+1\right)}{2x^{2}-1}x^{2}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express 4\times \frac{\sqrt{2}x+1}{2x^{2}-1} as a single fraction.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{1}{\sqrt{2}x-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express \frac{4\left(\sqrt{2}x+1\right)}{2x^{2}-1}x^{2} as a single fraction.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Rationalize the denominator of \frac{1}{\sqrt{2}x-1} by multiplying numerator and denominator by \sqrt{2}x+1.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}x\right)^{2}-1^{2}}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Consider \left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{\sqrt{2}x+1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{\sqrt{2}x+1}{2x^{2}-1^{2}}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
The square of \sqrt{2} is 2.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1-2\times \frac{\sqrt{2}x+1}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Calculate 1 to the power of 2 and get 1.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+v_{2}+1+\frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express -2\times \frac{\sqrt{2}x+1}{2x^{2}-1} as a single fraction.
\frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1}+\frac{\left(v_{2}+1\right)\left(2x^{2}-1\right)}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply v_{2}+1 times \frac{2x^{2}-1}{2x^{2}-1}.
\frac{4\left(\sqrt{2}x+1\right)x^{2}+\left(v_{2}+1\right)\left(2x^{2}-1\right)}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Since \frac{4\left(\sqrt{2}x+1\right)x^{2}}{2x^{2}-1} and \frac{\left(v_{2}+1\right)\left(2x^{2}-1\right)}{2x^{2}-1} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{2}x^{3}+4x^{2}+2v_{2}x^{2}-v_{2}+2x^{2}-1}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Do the multiplications in 4\left(\sqrt{2}x+1\right)x^{2}+\left(v_{2}+1\right)\left(2x^{2}-1\right).
\frac{4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Combine like terms in 4\sqrt{2}x^{3}+4x^{2}+2v_{2}x^{2}-v_{2}+2x^{2}-1.
\frac{4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1-2\left(\sqrt{2}x+1\right)}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Since \frac{4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1}{2x^{2}-1} and \frac{-2\left(\sqrt{2}x+1\right)}{2x^{2}-1} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1-2\sqrt{2}x-2}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Do the multiplications in 4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1-2\left(\sqrt{2}x+1\right).
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{1}{\sqrt{2}x+1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Combine like terms in 4\sqrt{2}x^{3}+6x^{2}-v_{2}+2v_{2}x^{2}-1-2\sqrt{2}x-2.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right)}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Rationalize the denominator of \frac{1}{\sqrt{2}x+1} by multiplying numerator and denominator by \sqrt{2}x-1.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}x\right)^{2}-1^{2}}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Consider \left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{\sqrt{2}x-1}{2x^{2}-1^{2}}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}-2\times \frac{\sqrt{2}x-1}{2x^{2}-1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Calculate 1 to the power of 2 and get 1.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x-1\right)}{2x^{2}-1}v_{2}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express -2\times \frac{\sqrt{2}x-1}{2x^{2}-1} as a single fraction.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x-1\right)v_{2}}{2x^{2}-1}x^{2}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express \frac{-2\left(\sqrt{2}x-1\right)}{2x^{2}-1}v_{2} as a single fraction.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1}+\frac{-2\left(\sqrt{2}x-1\right)v_{2}x^{2}}{2x^{2}-1}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express \frac{-2\left(\sqrt{2}x-1\right)v_{2}}{2x^{2}-1}x^{2} as a single fraction.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3-2\left(\sqrt{2}x-1\right)v_{2}x^{2}}{2x^{2}-1}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Since \frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3}{2x^{2}-1} and \frac{-2\left(\sqrt{2}x-1\right)v_{2}x^{2}}{2x^{2}-1} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3-2\sqrt{2}v_{2}x^{3}+2x^{2}v_{2}}{2x^{2}-1}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Do the multiplications in 4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3-2\left(\sqrt{2}x-1\right)v_{2}x^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{1}{\sqrt{2}x+1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Combine like terms in 4\sqrt{2}x^{3}+6x^{2}-2\sqrt{2}x+2v_{2}x^{2}-v_{2}-3-2\sqrt{2}v_{2}x^{3}+2x^{2}v_{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\sqrt{2}x-1}{\left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right)}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Rationalize the denominator of \frac{1}{\sqrt{2}x+1} by multiplying numerator and denominator by \sqrt{2}x-1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\sqrt{2}x-1}{\left(\sqrt{2}x\right)^{2}-1^{2}}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Consider \left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\sqrt{2}x-1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\sqrt{2}x-1}{2x^{2}-1^{2}}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\sqrt{2}x-1}{2x^{2}-1}v_{2}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Calculate 1 to the power of 2 and get 1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1}+\frac{\left(\sqrt{2}x-1\right)v_{2}}{2x^{2}-1}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express \frac{\sqrt{2}x-1}{2x^{2}-1}v_{2} as a single fraction.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3+\left(\sqrt{2}x-1\right)v_{2}}{2x^{2}-1}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Since \frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3}{2x^{2}-1} and \frac{\left(\sqrt{2}x-1\right)v_{2}}{2x^{2}-1} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}-v_{2}}{2x^{2}-1}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Do the multiplications in 4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3+\left(\sqrt{2}x-1\right)v_{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{1}{\sqrt{2}x+1}x^{2}-\frac{1}{\sqrt{2}x+1}
Combine like terms in 4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}-v_{2}+4v_{2}x^{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}-v_{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right)}x^{2}-\frac{1}{\sqrt{2}x+1}
Rationalize the denominator of \frac{1}{\sqrt{2}x+1} by multiplying numerator and denominator by \sqrt{2}x-1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}x\right)^{2}-1^{2}}x^{2}-\frac{1}{\sqrt{2}x+1}
Consider \left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{\sqrt{2}x-1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}x^{2}-\frac{1}{\sqrt{2}x+1}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{\sqrt{2}x-1}{2x^{2}-1^{2}}x^{2}-\frac{1}{\sqrt{2}x+1}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=2\times \frac{\sqrt{2}x-1}{2x^{2}-1}x^{2}-\frac{1}{\sqrt{2}x+1}
Calculate 1 to the power of 2 and get 1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)}{2x^{2}-1}x^{2}-\frac{1}{\sqrt{2}x+1}
Express 2\times \frac{\sqrt{2}x-1}{2x^{2}-1} as a single fraction.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{1}{\sqrt{2}x+1}
Express \frac{2\left(\sqrt{2}x-1\right)}{2x^{2}-1}x^{2} as a single fraction.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{\sqrt{2}x-1}{\left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}x+1} by multiplying numerator and denominator by \sqrt{2}x-1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{\sqrt{2}x-1}{\left(\sqrt{2}x\right)^{2}-1^{2}}
Consider \left(\sqrt{2}x+1\right)\left(\sqrt{2}x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{\sqrt{2}x-1}{\left(\sqrt{2}\right)^{2}x^{2}-1^{2}}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{\sqrt{2}x-1}{2x^{2}-1^{2}}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1}-\frac{\sqrt{2}x-1}{2x^{2}-1}
Calculate 1 to the power of 2 and get 1.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\left(\sqrt{2}x-1\right)x^{2}-\left(\sqrt{2}x-1\right)}{2x^{2}-1}
Since \frac{2\left(\sqrt{2}x-1\right)x^{2}}{2x^{2}-1} and \frac{\sqrt{2}x-1}{2x^{2}-1} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}}{2x^{2}-1}=\frac{2\sqrt{2}x^{3}-2x^{2}-\sqrt{2}x+1}{2x^{2}-1}
Do the multiplications in 2\left(\sqrt{2}x-1\right)x^{2}-\left(\sqrt{2}x-1\right).
4\sqrt{2}x^{3}-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}=2\sqrt{2}x^{3}-2x^{2}-\sqrt{2}x+1
Multiply both sides of the equation by 2x^{2}-1.
-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}=2\sqrt{2}x^{3}-2x^{2}-\sqrt{2}x+1-4\sqrt{2}x^{3}
Subtract 4\sqrt{2}x^{3} from both sides.
-2\sqrt{2}v_{2}x^{3}+6x^{2}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-2x^{2}-\sqrt{2}x+1
Combine 2\sqrt{2}x^{3} and -4\sqrt{2}x^{3} to get -2\sqrt{2}x^{3}.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-2x^{2}-\sqrt{2}x+1-6x^{2}
Subtract 6x^{2} from both sides.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}-2\sqrt{2}x-3+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-8x^{2}-\sqrt{2}x+1
Combine -2x^{2} and -6x^{2} to get -8x^{2}.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}-3+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-8x^{2}-\sqrt{2}x+1+2\sqrt{2}x
Add 2\sqrt{2}x to both sides.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}-3+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+1
Combine -\sqrt{2}x and 2\sqrt{2}x to get \sqrt{2}x.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+1+3
Add 3 to both sides.
-2\sqrt{2}v_{2}x^{3}+4v_{2}x^{2}-2v_{2}+\sqrt{2}xv_{2}=-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4
Add 1 and 3 to get 4.
\left(-2\sqrt{2}x^{3}+4x^{2}-2+\sqrt{2}x\right)v_{2}=-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4
Combine all terms containing v_{2}.
\left(-2\sqrt{2}x^{3}+4x^{2}+\sqrt{2}x-2\right)v_{2}=-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4
The equation is in standard form.
\frac{\left(-2\sqrt{2}x^{3}+4x^{2}+\sqrt{2}x-2\right)v_{2}}{-2\sqrt{2}x^{3}+4x^{2}+\sqrt{2}x-2}=\frac{-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4}{-2\sqrt{2}x^{3}+4x^{2}+\sqrt{2}x-2}
Divide both sides by -2\sqrt{2}x^{3}+4x^{2}-2+\sqrt{2}x.
v_{2}=\frac{-2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4}{-2\sqrt{2}x^{3}+4x^{2}+\sqrt{2}x-2}
Dividing by -2\sqrt{2}x^{3}+4x^{2}-2+\sqrt{2}x undoes the multiplication by -2\sqrt{2}x^{3}+4x^{2}-2+\sqrt{2}x.
v_{2}=-\frac{\sqrt{2}\left(\sqrt{2}x+4\right)}{2\left(-x+\sqrt{2}\right)}
Divide -2\sqrt{2}x^{3}-8x^{2}+\sqrt{2}x+4 by -2\sqrt{2}x^{3}+4x^{2}-2+\sqrt{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}