Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{2 \cdot 79 ^ {2} \cdot {(1.6 \cdot 10 ^ {-19})} ^ {2} 0.2679491924311227}{9 \cdot 10 ^ {9} \cdot 2 \cdot 7.6 \cdot 10 ^ {6} \cdot 1.6 \cdot 10 ^ {-19}}
Evaluate trigonometric functions in the problem
\frac{2\times 79^{2}\times \left(1.6\times 10^{-19}\right)^{2}\times 0.2679491924311227}{9\times 10^{15}\times 2\times 7.6\times 1.6\times 10^{-19}}
To multiply powers of the same base, add their exponents. Add 9 and 6 to get 15.
\frac{2\times 79^{2}\times \left(1.6\times 10^{-19}\right)^{2}\times 0.2679491924311227}{9\times 10^{-4}\times 2\times 7.6\times 1.6}
To multiply powers of the same base, add their exponents. Add 15 and -19 to get -4.
\frac{0.2679491924311227\times 79^{2}\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 7.6\times 9\times 10^{-4}}
Cancel out 2 in both numerator and denominator.
\frac{0.2679491924311227\times 6241\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 7.6\times 9\times 10^{-4}}
Calculate 79 to the power of 2 and get 6241.
\frac{1672.2709099626367707\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 7.6\times 9\times 10^{-4}}
Multiply 0.2679491924311227 and 6241 to get 1672.2709099626367707.
\frac{1672.2709099626367707\times \left(1.6\times \frac{1}{10000000000000000000}\right)^{2}}{1.6\times 7.6\times 9\times 10^{-4}}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{1672.2709099626367707\times \left(\frac{1}{6250000000000000000}\right)^{2}}{1.6\times 7.6\times 9\times 10^{-4}}
Multiply 1.6 and \frac{1}{10000000000000000000} to get \frac{1}{6250000000000000000}.
\frac{1672.2709099626367707\times \frac{1}{39062500000000000000000000000000000000}}{1.6\times 7.6\times 9\times 10^{-4}}
Calculate \frac{1}{6250000000000000000} to the power of 2 and get \frac{1}{39062500000000000000000000000000000000}.
\frac{\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}}{1.6\times 7.6\times 9\times 10^{-4}}
Multiply 1672.2709099626367707 and \frac{1}{39062500000000000000000000000000000000} to get \frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}.
\frac{\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}}{12.16\times 9\times 10^{-4}}
Multiply 1.6 and 7.6 to get 12.16.
\frac{\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}}{109.44\times 10^{-4}}
Multiply 12.16 and 9 to get 109.44.
\frac{\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}}{109.44\times \frac{1}{10000}}
Calculate 10 to the power of -4 and get \frac{1}{10000}.
\frac{\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}}{\frac{171}{15625}}
Multiply 109.44 and \frac{1}{10000} to get \frac{171}{15625}.
\frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000}\times \frac{15625}{171}
Divide \frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000} by \frac{171}{15625} by multiplying \frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000} by the reciprocal of \frac{171}{15625}.
\frac{5574236366542122569}{1425000000000000000000000000000000000000000000000000}
Multiply \frac{16722709099626367707}{390625000000000000000000000000000000000000000000000000} and \frac{15625}{171} to get \frac{5574236366542122569}{1425000000000000000000000000000000000000000000000000}.