Evaluate
\frac{84}{13}\approx 6.461538462
Factor
\frac{2 ^ {2} \cdot 3 \cdot 7}{13} = 6\frac{6}{13} = 6.461538461538462
Share
Copied to clipboard
\frac{4}{1\times 3}+\frac{4\times 4}{3\times 5}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 2 and 2 to get 4.
\frac{4}{3}+\frac{4\times 4}{3\times 5}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 1 and 3 to get 3.
\frac{4}{3}+\frac{16}{3\times 5}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 4 and 4 to get 16.
\frac{4}{3}+\frac{16}{15}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 3 and 5 to get 15.
\frac{20}{15}+\frac{16}{15}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Least common multiple of 3 and 15 is 15. Convert \frac{4}{3} and \frac{16}{15} to fractions with denominator 15.
\frac{20+16}{15}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Since \frac{20}{15} and \frac{16}{15} have the same denominator, add them by adding their numerators.
\frac{36}{15}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Add 20 and 16 to get 36.
\frac{12}{5}+\frac{6\times 6}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Reduce the fraction \frac{36}{15} to lowest terms by extracting and canceling out 3.
\frac{12}{5}+\frac{36}{5\times 7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 6 and 6 to get 36.
\frac{12}{5}+\frac{36}{35}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 5 and 7 to get 35.
\frac{84}{35}+\frac{36}{35}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Least common multiple of 5 and 35 is 35. Convert \frac{12}{5} and \frac{36}{35} to fractions with denominator 35.
\frac{84+36}{35}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Since \frac{84}{35} and \frac{36}{35} have the same denominator, add them by adding their numerators.
\frac{120}{35}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Add 84 and 36 to get 120.
\frac{24}{7}+\frac{8\times 8}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Reduce the fraction \frac{120}{35} to lowest terms by extracting and canceling out 5.
\frac{24}{7}+\frac{64}{7\times 9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 8 and 8 to get 64.
\frac{24}{7}+\frac{64}{63}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 7 and 9 to get 63.
\frac{216}{63}+\frac{64}{63}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Least common multiple of 7 and 63 is 63. Convert \frac{24}{7} and \frac{64}{63} to fractions with denominator 63.
\frac{216+64}{63}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Since \frac{216}{63} and \frac{64}{63} have the same denominator, add them by adding their numerators.
\frac{280}{63}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Add 216 and 64 to get 280.
\frac{40}{9}+\frac{10\times 10}{9\times 11}+\frac{12\times 12}{11\times 13}
Reduce the fraction \frac{280}{63} to lowest terms by extracting and canceling out 7.
\frac{40}{9}+\frac{100}{9\times 11}+\frac{12\times 12}{11\times 13}
Multiply 10 and 10 to get 100.
\frac{40}{9}+\frac{100}{99}+\frac{12\times 12}{11\times 13}
Multiply 9 and 11 to get 99.
\frac{440}{99}+\frac{100}{99}+\frac{12\times 12}{11\times 13}
Least common multiple of 9 and 99 is 99. Convert \frac{40}{9} and \frac{100}{99} to fractions with denominator 99.
\frac{440+100}{99}+\frac{12\times 12}{11\times 13}
Since \frac{440}{99} and \frac{100}{99} have the same denominator, add them by adding their numerators.
\frac{540}{99}+\frac{12\times 12}{11\times 13}
Add 440 and 100 to get 540.
\frac{60}{11}+\frac{12\times 12}{11\times 13}
Reduce the fraction \frac{540}{99} to lowest terms by extracting and canceling out 9.
\frac{60}{11}+\frac{144}{11\times 13}
Multiply 12 and 12 to get 144.
\frac{60}{11}+\frac{144}{143}
Multiply 11 and 13 to get 143.
\frac{780}{143}+\frac{144}{143}
Least common multiple of 11 and 143 is 143. Convert \frac{60}{11} and \frac{144}{143} to fractions with denominator 143.
\frac{780+144}{143}
Since \frac{780}{143} and \frac{144}{143} have the same denominator, add them by adding their numerators.
\frac{924}{143}
Add 780 and 144 to get 924.
\frac{84}{13}
Reduce the fraction \frac{924}{143} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}