Evaluate
\frac{\sqrt{3}}{2}\approx 0.866025404
Share
Copied to clipboard
\frac{2\times \frac{\sqrt{3}}{3}}{1+\left(\tan(30)\right)^{2}}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{2\sqrt{3}}{3}}{1+\left(\tan(30)\right)^{2}}
Express 2\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\frac{2\sqrt{3}}{3}}{1+\left(\frac{\sqrt{3}}{3}\right)^{2}}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{2\sqrt{3}}{3}}{1+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\sqrt{3}}{3}}{\frac{3^{2}}{3^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3^{2}}{3^{2}}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}}
Since \frac{3^{2}}{3^{2}} and \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{3}\times 3^{2}}{3\left(3^{2}+\left(\sqrt{3}\right)^{2}\right)}
Divide \frac{2\sqrt{3}}{3} by \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}} by multiplying \frac{2\sqrt{3}}{3} by the reciprocal of \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}.
\frac{2\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}+3^{2}}
Cancel out 3 in both numerator and denominator.
\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}+3^{2}}
Multiply 2 and 3 to get 6.
\frac{6\sqrt{3}}{3+3^{2}}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}}{3+9}
Calculate 3 to the power of 2 and get 9.
\frac{6\sqrt{3}}{12}
Add 3 and 9 to get 12.
\frac{1}{2}\sqrt{3}
Divide 6\sqrt{3} by 12 to get \frac{1}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}