Evaluate
0.54595535139930351
Share
Copied to clipboard
\frac{2 \cdot 0.36397023426620234}{1 + \tan^{2}(30)}
Evaluate trigonometric functions in the problem
\frac{0.72794046853240468}{1+\left(\tan(30)\right)^{2}}
Multiply 2 and 0.36397023426620234 to get 0.72794046853240468.
\frac{0.72794046853240468}{1+\left(\frac{\sqrt{3}}{3}\right)^{2}}
Get the value of \tan(30) from trigonometric values table.
\frac{0.72794046853240468}{1+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{0.72794046853240468}{\frac{3^{2}}{3^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3^{2}}{3^{2}}.
\frac{0.72794046853240468}{\frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}}
Since \frac{3^{2}}{3^{2}} and \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{0.72794046853240468\times 3^{2}}{3^{2}+\left(\sqrt{3}\right)^{2}}
Divide 0.72794046853240468 by \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}} by multiplying 0.72794046853240468 by the reciprocal of \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}.
\frac{0.72794046853240468\times 9}{3^{2}+\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{6.55146421679164212}{3^{2}+\left(\sqrt{3}\right)^{2}}
Multiply 0.72794046853240468 and 9 to get 6.55146421679164212.
\frac{6.55146421679164212}{9+\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{6.55146421679164212}{9+3}
The square of \sqrt{3} is 3.
\frac{6.55146421679164212}{12}
Add 9 and 3 to get 12.
\frac{655146421679164212}{1200000000000000000}
Expand \frac{6.55146421679164212}{12} by multiplying both numerator and the denominator by 100000000000000000.
\frac{54595535139930351}{100000000000000000}
Reduce the fraction \frac{655146421679164212}{1200000000000000000} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}